TRB3 - FPGA BASED, UNIVERSAL READOUT BOARD FOR PHYSICS EXPERIMENTS

Grzegorz Korcyl – Jagiellonian University
Plan

1. Predecessor: TRBv2
2. TRBv3 key features
3. TDC in FPGA implementation
4. GbE connectivity
5. Addon boards concept
6. Recent projects
7. Summary
Predecessor: TRBv2

- Main user: HADES experiment at GSI, Darmstadt
 - Successfully used in many beatimes
 - Time measurement – HPTDC
 - 128 channels – 30 ps resolution
 - 32 channels – 13 ps resolution
 - Motherboard
 - Supports many Addon boards
 - Slow control
 - ETRAX processor
- Used in many different projects:
 - Detectors prototypes
 - PET projects
Predecessor: TRBv2

- 4x HPTDC
 - 32 channels each
 - Up to 13ps resolution
- 1x Xilinx Virtex4 FPGA
 - TDC readout
- 1x ETRAX
 - Interface for slow control
- 1x 2,5Gbps Optical link
 - Data output
 - Connection to the larger system
- 1x Sharc DSP
- 1x RJ45
 - Interface to network
- 1x Addon connector
 - Extension board slot
- 1x Reference time input
Key features:

- 5x Lattice ECP3 150 FPGAs
 - 4 edge devices
 - 1 central
 - Flash ROMs for each

- 8x 3.2GBps optical links

- 4x 208pin QMS connectors
 - Small Addons

- 1x 106pin connector
 - Large Addon

- Hardware trigger input
TDC in FPGA implementation

- Field Programmable Gate Arrays
 - Reconfigurable programmable logic devices
 - Parallel processing
 - High clock frequency
 - Memory blocks
 - DSP blocks
 - SERDES units
 - Hard/soft core CPU
TDC in FPGA implementation

- No additional devices
- Precise time measurement (< 14ps resolution)
- High channel density (up to 64 channels per FPGA)
- 40MHz hit rate per channel
- Configurable by the end user (resolution in trade of channel number)
TDC in FPGA implementation

- Arrays/block boundaries – “Ultra Wide Bins”
- Sensitive to temperature and voltage variations
- Values vary between 3 ps – 100 ps
- PAR constraints very important
- Calibration needed
GbE connectivity

- TRBv3 designed to be used as:
 - Stand-alone measurement device
 - Part of a complex system

- Different communication solutions:
 - Based on 3.2GBps optical links
 - Links configured by groups of 4
 - Managed by central FPGA
 - Transmission of collected data
 - Control of the board or of the whole system
GbE connectivity

- Board management and data transmission
 - Gigabit Ethernet link
 - Full Duplex
 - Up to 118 MBps
 - Basic protocols (IP, UDP, ARP, DHCP, ICMP, Custom protocols)
 - Autonegotiation + network address acquisition
 - VLAN
 - Jumbo frames
 - Address filtering

Giagbit Ethernet with higher level protocols FPGA implementation
GbE connectivity

- Replacement for ETRAX
 - Slow control
- Network hub
 - Gathering of data from endpoints using custom protocols
 - Transmission to event builders via GbE
- Network traffic generator
 - Generation of personalized traffic in variety of protocols
Addon boards concept

- 4x 208 pin connectors
- 1x 106 pin connector

Features:
- Data transfer
- 3.3V and 6V power supply

Addon boards:
- Input signal converters
- Front-end modules
- Additional measurement devices
- Input / output extensions

Applications:
- Measurement
- Trigger module
- Network hub
Addon boards concept

- **Small addons:**
 - HUB module
 - Additional 6x 3.2GBps optical links
 - Central Trigger System module
 - Many input and output LVDS ports
 - ADC module
 - Board prototype, basic values: 2 channels, 10MSps, 6bit
 - Uses TDC on FPGA
Addon boards concept

- **Large addons** (used already with TRB2):
 - Central Trigger System module
 - HUB module
 - 20x 3.2GBps optical links
 - ADC module
 - 12x 8 channel, 40MSps, 10b ADC
 - NINO module
 - 128 channels TOT
Recent projects

- Replacement of TRB2 in HADES (GSI)
- PANDA (GSI) detectors prototypes:
 - Disc and Barell DIRC
 - Straw Tube Tracker
- CBM (GSI) detector prototypes:
 - MVD
 - Calorimeter
- Positron Emission Tomography
 - TOF project in Cracow
 - RPC project in Coimbra
- Many other
Summary

- Versatile solution for different kind of measurements

- Flexible integration with existing DAQ systems thanks to communication features

- Board produced and under intensive testing

- Already planned to be used in many upcoming experiments