

Bayesian inference of the resonance content of $p(\gamma, K^+)\Lambda$

L. De Cruz, J. Ryckebusch, P. Vancraeyveld and T. Vrancx

Ghent University, Belgium, https://ssftrac.ugent.be/strangecalc

12th International Workshop on Meson Production, Properties & Interaction Kraków, Poland, 31 May - 5 June 2012

The nucleon spectrum as we know it

The nucleon spectrum as we know it

An indirect glimpse inside the nucleon

Structures are manifestations of resonances

א ח	10000000	n cold
P	/ancrae	wein
	anorac	, . Cia

May 31, 2012 3 / 20

An indirect glimpse inside the nucleon

Focus on weaker channels to hunt for missing resonances

P. Vancraeyveld

May 31, 2012 3 / 20

Many analyses of $p(\gamma, K^+)\Lambda$

Single-channel

- Saclay-Lyon David et al., PRC 53 (1996) 2613
- VGL Vanderhaeghen et al., PRC 57 (1998) 1454
- KaonMAID Mart and Bennhold, PRC 61 (2000) 012201
- Gent-Isobar Ireland et al., NPA 740 (2004) 147
- RPR-2007 Corthals et al., PLB 656 (2007) 186
- RPR-2011 De Cruz et al., PRL 108 (2012) 182002

Coupled-channel

- Bonn-Gatchina Anisovich et al., EPJA 48 (2012) 15
- DCC-EBAC Julia-Diaz et al., PRC 73 (2006) 055204
- Giessen Shklyar et al., PRC 72 (2005) 015210

The conventional picture

The conventional picture

Isobar model

- Focus on resonance region
- Dominated by resonant contributions

The conventional picture

Isobar model

- Focus on resonance region
- Dominated by resonant contributions
- Many non-resonant contributions \Rightarrow background

5/20

The Regge-plus-resonance approach

The Regge-plus-resonance approach

Background contributions Guidal, Laget and Vanderhaeghen, NPA 627 (1997) 645

- Exchange of K(494) and $K^*(892)$ Regge trajectories in t channel
- Only 3 parameters
- Parametrizes non-resonant diagrams in resonance region

The Regge-plus-resonance approach

Resonant contributions

- enrich Regge background with nucleon resonances
- spin-1/2 resonance \rightarrow 1 parameter
- spin-3/2 & -5/2 resonances \rightarrow 2 parameters

The Regge-plus-resonance model

Our strategy Corthals et al., PRC 73 (2006) 045207

- Construct Regge model (=background)
 - Fit parameters to high-energy data
 - Add resonance contributions
 - Fit parameters to resonance region data

2

Regge-2011: results

Regge model with 3 parameters

P. Vancraeyveld

----- model A: 2 parameters

- Minimize χ^2
- Compare χ^2_{\min}

— model B: 20 parameters

Conventional approach

- Minimize χ^2
- Compare χ^2_{\min}

Problem

- More parameters \Rightarrow lower $\chi^2_{\rm min}$
- Adding resonance
 ⇒ improved model (?)

----- model A: 2 parameters model B: 20 parameters

Conventional approach

- Minimize χ^2
- Compare χ^2_{\min}

Problem

- More parameters \Rightarrow lower $\chi^2_{\rm min}$
- Adding resonance
 ⇒ improved model (?)

What is a good model?

- High predictive power!
- Parsimony principle: Occam's razor.

----- model A: 2 parameters ----- model B: 20 parameters

May 31, 2012 10 / 20

Model selection

P. Vancraeyveld

May 31, 2012 11 / 20

Model selection

Are we asking the right question?

- Which model has the highest maximum likelihood?
- What is the probability of the model, given the data?

P (Model | Data)

• $P(Model|Data) \propto Bayesian evidence \mathcal{Z}$

$$\mathcal{Z} = \int \underbrace{\mathcal{L}(\alpha)}_{\alpha} \underbrace{\pi(\alpha)}_{\alpha} d\alpha$$

Likelihood Prior

• $P(Model|Data) \propto Bayesian evidence \mathcal{Z}$

$$\mathcal{Z} = \int \underbrace{\mathcal{L}(\alpha)}_{\text{Likelihood}} \underbrace{\pi(\alpha)}_{\text{Prior}} d\alpha$$

- Absolute $\ensuremath{\mathcal{Z}}$ has no meaning, only ratios do

$$\frac{\mathcal{Z}_{A}}{\mathcal{Z}_{B}} = \frac{P(M_{A}|D)}{P(M_{B}|D)}$$

May 31, 2012

12/20

• $P(Model|Data) \propto Bayesian evidence \mathcal{Z}$

$$\mathcal{Z} = \int \underbrace{\mathcal{L}(\alpha)}_{\text{Likelihood}} \underbrace{\pi(\alpha)}_{\text{Prior}} \boldsymbol{d}\alpha$$

- Absolute $\ensuremath{\mathcal{Z}}$ has no meaning, only ratios do

$$\frac{\mathcal{Z}_{A}}{\mathcal{Z}_{B}} = \frac{P(M_{A}|D)}{P(M_{B}|D)}$$

- Model comparison $\Rightarrow \Delta \ln \mathcal{Z} \equiv \ln \mathcal{Z}_A / \mathcal{Z}_B$

	$ \Delta \ln \mathcal{Z} $	< 1	Not worth more than a bare mention.
1 <	$ \Delta \ln \mathcal{Z} $	< 2.5	Significant.
2.5 <	$ \Delta \ln \mathcal{Z} $	< 5	Strong to very strong.
5 <	$ \Delta \ln \mathcal{Z} $		Decisive.

- Z is not obvious to calculate
- Need genetic algorithms + MINUIT/MINOS + VEGAS integration

For many details, see arXiv:1205.2195

Bayesian evidence map for 2048 models

Possible resonances

- *S*₁₁(1535) ****
- *S*₁₁(1650) ****
- D₁₅(1675) ****
- *F*₁₅(1680) ****
- *D*₁₃(1700) ★★★
- *P*₁₁(1710) ***
- *P*₁₃(1720) ****
- D₁₃(1900) m
- P₁₃(1900) **
- P₁₁(1900) m
- F₁₅(2000) ***

Bayesian evidence map for 2048 models

RPR-2011

- *S*₁₁(1535) ****
- *S*₁₁(1650) ****
- *D*₁₅(1675) ****
- *F*₁₅(1680) ****
- D₁₃(1700) ***
- *P*₁₁(1710) ***
- *P*₁₃(1720) ****
- D₁₃(1900) m
- *P*₁₃(1900) **
- P₁₁(1900) m
- *F*₁₅(2000) ***

PRL 108 (2012) 182002

The RPR-2011 model - Differential cross section

The RPR-2011 model - Recoil polarisation

Resonant contributions to $p(\gamma, K^+)\Lambda$

	S ₁₁ (1535)	$S_{11}(1650)$	$D_{15}(1675)$	$F_{15}(1680)$	$D_{13}(1700)$	$P_{11}(1710)$	$P_{13}(1720)$	$D_{13}(1900)$	$P_{13}(1900)$	$P_{11}(1900)$	$F_{15}(2000)$	$J \ge 7/2$
Bonn-Gatchina	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark					\checkmark
DCC-EBAC	\checkmark	\checkmark						\checkmark	\checkmark			
Gent-Isobar		\checkmark				\checkmark	\checkmark			\checkmark		
Giessen		\checkmark				\checkmark	\checkmark		\checkmark			
KaonMAID		\checkmark				\checkmark	\checkmark	\checkmark				
RPR-2007		\checkmark				\checkmark	\checkmark	\checkmark	\checkmark			
RPR-2011	\checkmark	\checkmark		\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Saclay-Lyon		\checkmark	\checkmark			\checkmark	\checkmark					
SAID	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark				\checkmark	\checkmark
						_					mari i	

P. Vancraeyveld

P. Vancraeyveld

May 31, 2012 18 / 20

Bayesian evidences allow to determine P(R|D) and $P(\neg R|D)$.

No evidence for...

- $D_{15}(1675)$ Features in B-G, S-L, SAID
 - doesn't couple to $K\Lambda$
 - ▶ *** in PDG, absent in SAID
 - couples mainly to $\pi\pi N$ in B-G
 - ▶ *** in PDG, absent in SAID
 - couples strongly (25%) to KA in B-G

 $D_{13}(1700)$

 $P_{11}(1710)$

19/20

In the important 1900-MeV region...

- Evidence for 3 states \rightarrow disfavors quark-diquark models
- D₁₃(1900): evidence is significant, not decisive

19/20

May 31, 2012

Conclusions

- Strangeness production is challenging!
 - Background dominated
 - Many overlapping resonances
 - Conventional isobar approach less appropriate

Conclusions

- Strangeness production is challenging!
 - Background dominated
 - Many overlapping resonances
 - Conventional isobar approach less appropriate
- Regge-plus-resonance (RPR) approach
 - reggeizes background and constrains it at high energies
 - adds N^* 's and Δ^* 's in the resonance region
 - valid threshold $\leq E_{\gamma}^{lab} \leq 16 \, \text{GeV}$
 - economical description, i.e. limited number of parameters

Conclusions

- Strangeness production is challenging!
 - Background dominated
 - Many overlapping resonances
 - Conventional isobar approach less appropriate
- Regge-plus-resonance (RPR) approach
 - reggeizes background and constrains it at high energies
 - adds N^* 's and Δ^* 's in the resonance region
 - valid threshold $\leq E_{\gamma}^{lab} \leq 16 \, \text{GeV}$
 - economical description, i.e. limited number of parameters
- RPR-2011 model
 - describes $p(\gamma, K^+) \wedge$ world data
 - Bayesian methodology as ultimate tool for model selection
 - Evidence for P₁₃(1900) (**), P₁₁(1900) (missing) and D₁₃(1900) (missing)

BACKUP

1/12

Outline	Introduction	RPR formalism ●○○○○○○	Results	New projects	Conclusion
Isobar theory					

Kinematics

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega_K^*} = \frac{1}{64\,\pi^2}\,\frac{|\vec{p}_K^*|}{\omega^*}\,\frac{1}{(\omega^* + E_p^*)^2}\,\overline{\sum}_{\lambda,\lambda_i,\lambda_f}|\mathcal{M}_\lambda^{\lambda_i,\lambda_f}|^2$$

Background contributions: the Regge model

M. Guidal et al., PRC 68, 058201 (2003)

Background part of the amplitude contains exchanged K^* or Y^* states (*t* or *u* channel)at forward (backward) angles

- we focus on K^{*} exchange → forward kaon scattering angles
- instead of individual hadrons, entire families of hadrons are exchanged: "Regge trajectories"

Regge trajectories

Hadrons belong to classes with:

- same internal quantum numbers, but different spins J
- linear relation between squared mass (m_i²) and spin (J_i) of members of a class

$$\rightsquigarrow$$
 "Regge trajectory" $\alpha(t)$ with $\alpha(t = m_i^2) = J_i$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

RPR formalism

Results

Modeling Regge-trajectory exchange

Modify the intermediate-particle propagator
Isobar:
$$\mathcal{P}_{isobar}^{K^*}(t) = \frac{1}{t - m_{K^*}^2}$$

 \downarrow
Regge: $\mathcal{P}_{Regge}^{K^*}(s, t) = \frac{s^{\alpha_{K^*}(t) - \alpha_{K^*}, 0}}{\sin[\pi \alpha_{K^*}(t)]}$
 $\left\{\begin{array}{c} 1\\ e^{-i\pi \alpha_{K^*}(t)}\end{array}\right\} \frac{\pi \alpha'_{K^*}}{\Gamma[1 + \alpha_{K^*}(t) - \alpha_0]}$

isobar propagator

 \leftrightarrow

- single pole in t
- cross sections increase unrealistically with energy
- purely real

$$s = (p_{\rho} + p_{\gamma})^{2} = W^{2}$$

$$t = (p_{\rho} - p_{K})^{2} = p_{K^{*}}^{2}$$

$$\alpha_{K^{*}}(t) = \alpha_{K^{*},0} + \alpha'_{K^{*}}(t - m_{K^{*}}^{2})$$

Regge propagator

- series of poles, one per trajectory member
- s-dependence leads to cross sections decreasing with energy
- either constant or rotating phase

Results

Resonance contributions

 Resonance decay accounted for through substitution in propagators:

$$s - m_R^2 \longrightarrow s - m_R^2 + i m_R \Gamma_R$$

Regularization of RKY vertex: Gaussian form factors (resonance contributions vanish at high energies)

$$\mathcal{F}_{Gauss}(\mathbf{s}) = \exp\left\{-rac{(\mathbf{s}-m_R^2)^2}{\Lambda_{res}^4}
ight\}$$

 Electromagnetic form factors for γ*pΛ* and γ*pΔ* vertices: computed in Bonn constituent-quark model R. Ricken et al., EPJA 9, 221 (2000); U. Loering et al., EPJA 10, 395 (2001); T. Van Cauteren et al., EPJ. A 26, 339 (2005)

The issue of double counting...

Duality

energy-averaged sum over all *N**'s equals the sum over all t-channel Regge-trajectory echanges

Evaluate double counting

May 31, 2012

- Refit BG and resonances simultaneously
- effect on BG and full RPR is modest
- estimated effect on resonance parameters is 20 %

2/12

The RPR-2007 model

... a model for $K^+\Lambda$ and $K^+\Sigma^0$ production

May 31, 2012

3/12

High-energy region

- K(494) and K*(892) Regge-trajectory exchange
- Fitting database:
 - K⁺Λ: 72 data points pre-1980
 - $K^+\Sigma^0$: 57 data points pre-1980

Resonance region

PRC73(2006)045207, PRC75(2007)045204, PLB656(2007)186

- Fixed set of established PDG resonances
- Investigate 3 possible missing resonances at $M_R = 1900 \,\mathrm{MeV}$
- Inconsistent Rarita-Schwinger couplings for J = 3/2 resonances
- Fitted to $K^+\Lambda$ and $K^+\Sigma^0$ world data pre-2007

RPR-2007 results at high energies

Regge model with 3 parameters

4/12

RPR-2007 results

K⁺Λ channel _{PRC73(2006)045207}

- $S_{11}(1650), P_{11}(1710), P_{13}(1720), P_{13}(1900)$
- missing *D*₁₃(1900)

 $K^+\Sigma^0$ channel PRC75(2007)045204

• $S_{11}(1650), P_{11}(1710), P_{13}(1720), P_{13}(1900)$

- Good description of data
- Resonances compatible with constituent-quark model

RPR-2007 results: photoproduction

$K^+ \Lambda$ amplitude

- K-traj.
- *K**(892)-traj.
- *S*₁₁(1650)
- *P*₁₁(1710)
- P₁₃(1720)
- *P*₁₃(1900)
- D₁₃(1900)

Eur. Phys. J. **A31**, 79 (2007) Phys. Rev. Lett. **91**, 092001 (2003) Phys. Rev. **D20**, 1553 (1979)

RPR provides an efficient description of the world data from threshold up to $\omega_{lab} = 16 \,\text{GeV}$

RPR-2007 predictions: photo- and electroproduction

The RPR-2011 model

... a model for $K^+\Lambda$ production

High-energy region

PLB 694 (2010) 33

- *K*(494) and *K*^{*}(892) Regge-trajectory exchange
- Fitting database:
 - 262 data points from latest CLAS publication ($W > 2.6 \,\text{GeV}$)

McCracken et al., PRC81(2010)025201

Resonance region

PRL 108 (2012) 182002

- Investigate 11 possible resonances
- Consistent couplings for J = 3/2 and J = 5/2 resonances Vrancx et al., PRC84(2011)045201
- Fitted to up-to-date world data

Observable	#data	Experiment	Year	Reference		
$\frac{d\sigma}{d\Omega}$	56	SLAC	1969	Boyarski <i>et al.</i>		
011	720	SAPHIR	2004	Glander et al.		
	1377	CLAS	2006	Bradford et al.		
	12	LEPS	2007	Hicks et al.		
	2066	CLAS	2010	McCracken et al.		
Σ	9	SLAC	1979	Quinn <i>et al.</i>		
	45	LEPS	2003	Zegers et al.		
	54	LEPS	2006	Sumihama et al.		
	4	LEPS	2007	Hicks et al.		
	66	GRAAL	2007	Lleres et al.		
Т	3	BONN	1978	Althoff et al.		
	66	GRAAL	2008	Lleres et al.		
Р	7	DESY	1972	Vogel <i>et al.</i>		
	233	CLAS	2004	McNabb et al.		
	66	GRAAL	2007	Lleres et al.		
	1707	CLAS	2010	McCracken et al.		
C_x , C_z	320	CLAS	2007	Bradford et al.		
$O_{x'}, O_{z'}$	132	GRAAL	2008	Lleres et al.		

P. Vancraeyveld

The Rarita-Schwinger formalism Interacting Rarita-Schwinger fields

(日) (同) (三) (三)

Interacting Rarita-Schwinger fields

On-shell case

- On-shell R-S field is described by R-S spinor
- Unphysical components of R-S spinor decouple from the interaction

Off-shell case

- Off-shell R-S field is described by R-S propagator
- Unphysical components of R-S propagator do not decouple a priori
- Consistent interaction should be invariant under certain **local gauge**

Consistency and locality of the interaction The gauge-invariant Rarita-Schwinger field Consistent interaction theories

Consistency and locality of the interaction

Interpretation

Interaction is mediated purely by physical component of R-S field

Tom Vrancx

Inconsistency of standard hadronic form factors The multidipole-Gauss form factor

Inconsistency of standard hadronic form factors

Hadronic form factor required to suppress high-energy behavior

Inconsistency of standard hadronic form factors The multidipole-Gauss form factor

Inconsistency of standard hadronic form factors

Remarks

• Lowering Λ_R results in shift of artificial bump towards W_0

• Lowering Λ_R only effective when Γ_R is "small"

▶ practically all N^* 's listed by PDG have "large" Γ_R

Tom Vrancx Consistent interactions for high-spin fermion fields – NSTAR 2011, Jefferson Lab, Newport News, VA 16 / 25

Inconsistency of standard hadronic form factors The multidipole-Gauss form factor

The multidipole-Gauss form factor

Multidipole-Gauss form factor

$$F_{mG}(s; m_R, \Lambda_R, \Gamma_R, J_R) = \left(\frac{m_R^2 \widetilde{\Gamma}_R^2(J_R)}{(s - m_R^2)^2 + m_R^2 \widetilde{\Gamma}_R^2(J_R)}\right)^{J_R - \frac{1}{2}} \exp\left(-\frac{(s - m_R^2)^2}{\Lambda_R^4}\right)$$

- Dipole part of F_{mG} raises multiplicity of propagator pole
- Modified decay width

$$\widetilde{\Gamma}_R(J_R) = rac{\Gamma_R}{\sqrt{2^{rac{1}{2J_R}} - 1}}$$

Tom Vrancx Consistent interactions for high-spin fermion fields – NSTAR 2011, Jefferson Lab, Newport News, VA 18 / 25

Inconsistency of standard hadronic form factors The multidipole-Gauss form factor

< 67 >

The multidipole-Gauss form factor

Remarks

- Artificial bump is removed and resonance peak is restored
- Threshold effects for $m_R \frac{\Gamma_R}{2} \approx W_0$
 - Peak position not at $W = m_R$
 - ▶ Peak position and width are function of Λ_R