Radiative decays of vector and pseudoscalar nonets

Carla Terschlüsen

Department of Physics and Astronomy Uppsala University

MESON 2012, Cracow, Poland, June 2012

<u>Collaborators:</u> S. Leupold, M.F.M. Lutz Talk based on arXiv:1204.4125 [hep-ph].

Motivation

Consider the decay $\omega \to \pi^0 l^+ l^-$.

Motivation

 \hookrightarrow standard vector meson dominance (VMD) fails to describe the data

Problem in QCD

PDG, J. Phys. G33, 1 (2006)

Running coupling constant in QCD

• high energies:

can use perturbation theory

• low energies:

cannot use perturbation theory

Possible solution:

effective theories

 $\hookrightarrow \text{ hadrons as relevant degrees of} \\ \text{freedom}$

Effective theories for light mesons

Chiral perturbation theory (ChPT): vector mesons are heavy

 \Rightarrow not applicable for energy range of hadronic resonances (ρ , ω , K^* , φ , $\eta')$

Effective theories for light mesons

Chiral perturbation theory (ChPT): vector mesons are heavy

 \Rightarrow not applicable for energy range of hadronic resonances (ρ , ω , K^* , φ , $\eta')$

\hookrightarrow new counting scheme:

- masses of both vector mesons and pseudoscalar mesons are treated as soft, i.e. $\sim Q$
- decays: all involved momenta are smaller than the mass of the decaying meson, i.e. $\sim Q$

Effective theories for light mesons

Chiral perturbation theory (ChPT): vector mesons are heavy

 \Rightarrow not applicable for energy range of hadronic resonances (ρ , ω , K^* , φ , η')

\hookrightarrow new counting scheme:

- masses of both vector mesons and pseudoscalar mesons are treated as soft, i.e. $\sim Q$
- decays: all involved momenta are smaller than the mass of the decaying meson, i.e. $\sim Q$

Possible justification:

other low-lying mesons are dynamically generated from interactions of pseudoscalar and vector mesons (hadrogenesis conjecture)

Leading-order (LO) Lagrangian for decays $V \to P\gamma^*$ and $P \to V\gamma^*$:

$$\begin{aligned} \mathcal{L} &= - \frac{h_A}{16f} \, \varepsilon^{\mu\nu\alpha\beta} \, \mathrm{tr} \left\{ \left[\Phi_{\mu\nu}, \partial^{\tau} \Phi_{\tau\alpha} \right]_+ \partial_{\beta} \Phi \right\} \\ &- \frac{b_A}{8f} \, \varepsilon^{\mu\nu\alpha\beta} \, \mathrm{tr} \left\{ \Phi_{\mu\nu} \left[\Phi, \chi_0 \right]_+ \Phi_{\alpha\beta} \right\} \\ &- \frac{m_V^2 h_H}{4f_H} \, \varepsilon^{\mu\nu\alpha\beta} \, \mathrm{tr} \left\{ \Phi_{\mu\nu} \Phi_{\alpha\beta} \right\} \tilde{\eta}_1 \\ &- e f_V \, \mathrm{tr} \left\{ \Phi^{\mu\nu} \mathcal{Q} \right\} \partial_{\mu} A_{\nu} \\ &+ \frac{e f_V e_H}{f_H} \, \varepsilon^{\mu\nu\alpha\beta} \, \mathrm{tr} \left\{ \Phi_{\mu\nu} \, \mathcal{Q} \right\} \partial_{\alpha} A_{\beta} \, \tilde{\eta}_1 \end{aligned}$$

Leading-order (LO) Lagrangian for decays $V \to P\gamma^*$ and $P \to V\gamma^*$:

$$\mathcal{L} = -\frac{h_A}{16f} \varepsilon^{\mu\nu\alpha\beta} \operatorname{tr} \left\{ \left[\Phi_{\mu\nu}, \partial^{\tau} \Phi_{\tau\alpha} \right]_+ \partial_{\beta} \Phi \right\}$$

$$-\frac{b_A}{8f} \varepsilon^{\mu\nu\alpha\beta} \operatorname{tr} \left\{ \Phi_{\mu\nu} \left[\Phi, \chi_0 \right]_+ \Phi_{\alpha\beta} \right\}$$

$$-\frac{m_V^2 h_H}{4f_H} \varepsilon^{\mu\nu\alpha\beta} \operatorname{tr} \left\{ \Phi_{\mu\nu} \Phi_{\alpha\beta} \right\} \tilde{\eta}_1$$

$$-ef_V \operatorname{tr} \left\{ \Phi^{\mu\nu} \mathcal{Q} \right\} \partial_{\mu} A_{\nu}$$

$$+\frac{ef_V e_H}{f_H} \varepsilon^{\mu\nu\alpha\beta} \operatorname{tr} \left\{ \Phi_{\mu\nu} \mathcal{Q} \right\} \partial_{\alpha} A_{\beta} \tilde{\eta}_1$$

 \Rightarrow only decays via virtual vector mesons allowed

V

Leading-order (LO) Lagrangian for decays $V \to P\gamma^*$ and $P \to V\gamma^*$:

$$\begin{aligned} \mathcal{L} &= -\frac{h_A}{16f} \varepsilon^{\mu\nu\alpha\beta} \operatorname{tr} \left\{ \begin{bmatrix} \Phi_{\mu\nu}, \partial^{\tau} \Phi_{\tau\alpha} \end{bmatrix}_{+} \partial_{\beta} \Phi \right\} & P \\ &- \frac{b_A}{8f} \varepsilon^{\mu\nu\alpha\beta} \operatorname{tr} \left\{ \Phi_{\mu\nu} \begin{bmatrix} \Phi, \chi_0 \end{bmatrix}_{+} \Phi_{\alpha\beta} \right\} & l^+ \\ &- \frac{m_V^2 h_H}{4f_H} \varepsilon^{\mu\nu\alpha\beta} \operatorname{tr} \left\{ \Phi_{\mu\nu} \Phi_{\alpha\beta} \right\} \tilde{\eta}_1 & P \\ &- ef_V \operatorname{tr} \left\{ \Phi^{\mu\nu} \mathcal{Q} \right\} \partial_{\mu} A_{\nu} & l^+ \\ &+ \frac{ef_V e_H}{f_H} \varepsilon^{\mu\nu\alpha\beta} \operatorname{tr} \left\{ \Phi_{\mu\nu} \mathcal{Q} \right\} \partial_{\alpha} A_{\beta} \tilde{\eta}_1 & l^- \end{aligned}$$

 \Rightarrow only decays via virtual vector mesons allowed (except for $\tilde{\eta}_1$)

Leading-order (LO) Lagrangian for decays $V \rightarrow P\gamma^*$ and $P \rightarrow V\gamma^*$:

$$\begin{aligned} \mathcal{L} &= -\frac{h_A}{16f} \,\varepsilon^{\mu\nu\alpha\beta} \operatorname{tr} \left\{ \begin{bmatrix} \Phi_{\mu\nu}, \partial^{\tau} \Phi_{\tau\alpha} \end{bmatrix}_+ \partial_{\beta} \Phi \right\} & P \\ &- \frac{b_A}{8f} \,\varepsilon^{\mu\nu\alpha\beta} \operatorname{tr} \left\{ \Phi_{\mu\nu} \begin{bmatrix} \Phi, \chi_0 \end{bmatrix}_+ \Phi_{\alpha\beta} \right\} & l^+ \\ &- \frac{m_V^2 h_H}{4f_H} \,\varepsilon^{\mu\nu\alpha\beta} \operatorname{tr} \left\{ \Phi_{\mu\nu} \Phi_{\alpha\beta} \right\} \tilde{\eta}_1 & P \\ &- ef_V \operatorname{tr} \left\{ \Phi^{\mu\nu} \mathcal{Q} \right\} \partial_{\mu} A_\nu & l^+ \\ &+ \frac{ef_V e_H}{f_H} \,\varepsilon^{\mu\nu\alpha\beta} \operatorname{tr} \left\{ \Phi_{\mu\nu} \,\mathcal{Q} \right\} \partial_{\alpha} A_\beta \,\tilde{\eta}_1 & l^- \end{aligned}$$

 \Rightarrow only decays via virtual vector mesons allowed (except for $\tilde{\eta}_1$) Decay photon into dilepton: usual QED

η - η^\prime mixing

Pseudoscalar meson nonet Φ includes non-physical singlet state $\tilde{\eta}_1$ and octet state η_8 :

$$\Phi = \eta_8 \,\lambda^8 + \tilde{\eta}_1 \, \frac{J}{f_H} \,\lambda^0 + \dots$$

 \Rightarrow physical fields η and η' are defined via

$$\eta = -\tilde{\eta}_1 \sin \theta + \eta_8 \cos \theta,$$

$$\eta' = \tilde{\eta}_1 \cos \theta + \eta_8 \sin \theta$$

with to be determined mixing angle $\boldsymbol{\theta}$

η - η' mixing

Pseudoscalar meson nonet Φ includes non-physical singlet state $\tilde{\eta}_1$ and octet state η_8 :

$$\Phi = \eta_8 \, \lambda^8 + \tilde{\eta}_1 \, \frac{J}{f_H} \, \lambda^0 + \dots$$

 \Rightarrow physical fields η and η' are defined via

$$\eta = -\tilde{\eta}_1 \sin \theta + \eta_8 \cos \theta, \eta' = \tilde{\eta}_1 \cos \theta + \eta_8 \sin \theta$$

with to be determined mixing angle $\boldsymbol{\theta}$

Definition: no mixing between η and η'

 \Rightarrow could determine mixing angle θ from experimental masses

η - η' mixing

Pseudoscalar meson nonet Φ includes non-physical singlet state $\tilde{\eta}_1$ and octet state η_8 :

$$\Phi = \eta_8 \,\lambda^8 + \tilde{\eta}_1 \, \frac{J}{f_H} \,\lambda^0 + \dots$$

 \Rightarrow physical fields η and η' are defined via

$$\eta = -\tilde{\eta}_1 \sin \theta + \eta_8 \cos \theta, \eta' = \tilde{\eta}_1 \cos \theta + \eta_8 \sin \theta$$

with to be determined mixing angle $\boldsymbol{\theta}$

Definition: no mixing between η and η'

 \Rightarrow could determine mixing angle θ from experimental masses

But: less than 5% discrepancy between theoretical and experimental masses for $|\theta| \le 15^\circ$

η - η' mixing

Pseudoscalar meson nonet Φ includes non-physical singlet state $\tilde{\eta}_1$ and octet state η_8 :

$$\Phi = \eta_8 \,\lambda^8 + \tilde{\eta}_1 \, \frac{J}{f_H} \,\lambda^0 + \dots$$

 \Rightarrow physical fields η and η' are defined via

$$\eta = -\tilde{\eta}_1 \sin \theta + \eta_8 \cos \theta, \eta' = \tilde{\eta}_1 \cos \theta + \eta_8 \sin \theta$$

with to be determined mixing angle $\boldsymbol{\theta}$

Definition: no mixing between η and η'

 \Rightarrow could determine mixing angle θ from experimental masses

- But: less than 5% discrepancy between theoretical and experimental masses for $|\theta| \le 15^\circ$
- \Rightarrow use θ as additional open parameter

Parameter determination (I)

LO Lagrangian has six open parameters h_A , b_A , h_H , e_H , f_H and θ :

$$\mathcal{L} = -\frac{h_A}{16f} \varepsilon^{\mu\nu\alpha\beta} \operatorname{tr} \left\{ \left[\Phi_{\mu\nu}, \partial^{\tau} \Phi_{\tau\alpha} \right]_+ \partial_{\beta} \Phi \right\} - \frac{b_A}{8f} \varepsilon^{\mu\nu\alpha\beta} \operatorname{tr} \left\{ \Phi_{\mu\nu} \left[\Phi, \chi_0 \right]_+ \Phi_{\alpha\beta} \right\} - \frac{m_V^2 h_H}{4f_H} \varepsilon^{\mu\nu\alpha\beta} \operatorname{tr} \left\{ \Phi_{\mu\nu} \Phi_{\alpha\beta} \right\} \tilde{\eta}_1 - ef_V \operatorname{tr} \left\{ \Phi^{\mu\nu} \mathcal{Q} \right\} \partial_{\mu} A_{\nu} + \frac{ef_V e_H}{f_H} \varepsilon^{\mu\nu\alpha\beta} \operatorname{tr} \left\{ \Phi_{\mu\nu} \mathcal{Q} \right\} \partial_{\alpha} A_{\beta} \tilde{\eta}_1$$

Parameter determination (I)

LO Lagrangian has six open parameters h_A , b_A , h_H , e_H , f_H and θ :

$$\mathcal{L} = -\frac{h_A}{16f} \varepsilon^{\mu\nu\alpha\beta} \operatorname{tr} \left\{ \left[\Phi_{\mu\nu}, \partial^{\tau} \Phi_{\tau\alpha} \right]_+ \partial_{\beta} \Phi \right\} - \frac{b_A}{8f} \varepsilon^{\mu\nu\alpha\beta} \operatorname{tr} \left\{ \Phi_{\mu\nu} \left[\Phi, \chi_0 \right]_+ \Phi_{\alpha\beta} \right\} - \frac{m_V^2 h_H}{4f_H} \varepsilon^{\mu\nu\alpha\beta} \operatorname{tr} \left\{ \Phi_{\mu\nu} \Phi_{\alpha\beta} \right\} \tilde{\eta}_1 - ef_V \operatorname{tr} \left\{ \Phi^{\mu\nu} \mathcal{Q} \right\} \partial_{\mu} A_{\nu} + \frac{ef_V e_H}{f_H} \varepsilon^{\mu\nu\alpha\beta} \operatorname{tr} \left\{ \Phi_{\mu\nu} \mathcal{Q} \right\} \partial_{\alpha} A_{\beta} \tilde{\eta}_1$$

 $\stackrel{\leftarrow}{\rightarrow} \text{determine all parameters except } f_H \text{ from five two-body decays} \\ \omega \to \pi^0 \gamma, \quad \omega \to \eta \gamma, \quad \phi \to \eta \gamma, \quad \phi \to \eta' \gamma, \quad \eta' \to \omega \gamma$

 \Rightarrow compare $|\mathcal{M}_{A \to B\gamma}|^2$ with $|\mathcal{M}_{A \to B\gamma}^{exp}|^2$

Parameter determination (II)

only absolute values $|\mathcal{M}_{A \to B\gamma}|$ can be compared

- \Rightarrow after fixing h_A to be positive: four parameter sets left
- $\Rightarrow \textbf{two sets with "reasonable" parameters (compared to previous calculations without <math>\eta'$) M. F. M. Lutz, S. Leupold, Nucl. Phys. A813, 96 (2008).
 - S. Leupold, M. F. M. Lutz, Eur. Phys. J. A39, 205 (2009).
 - C.T., S. Leupold, Phys. Lett. **B691**, 191 (2010).

Parameter determination (II)

only absolute values $|\mathcal{M}_{A \rightarrow B\gamma}|$ can be compared

- \Rightarrow after fixing h_A to be positive: four parameter sets left
- $\Rightarrow \textbf{two sets with "reasonable" parameters (compared to previous calculations without <math>\eta'$) M. F. M. Lutz, S. Leupold, Nucl. Phys. A813, 96 (2008).

 $\begin{array}{rcl}
\theta &=& \pm 2.0^{\circ}, \\
h_A &=& 2.33, \\
b_A &=& 0.16, \\
h_H &=& 0.14 \mp 0.19 \, \frac{f_H}{f}, \\
e_H &=& -0.20 \mp 0.70 \, \frac{f_H}{f}
\end{array}$

M. F. M. Lutz, S. Leupold, Nucl. Phys. A813, 96 (2008).
 S. Leupold, M. F. M. Lutz, Eur. Phys. J. A39, 205 (2009).
 C.T., S. Leupold, Phys. Lett. B691, 191 (2010).

with
$$f_H \in \left[f, \sqrt{2}f\right]$$

Parameter determination (II)

only absolute values $|\mathcal{M}_{A \to B\gamma}|$ can be compared

- \Rightarrow after fixing h_A to be positive: four parameter sets left
- $\Rightarrow \textbf{two sets with "reasonable" parameters (compared to previous calculations without <math>\eta'$) M. F. M. Lutz, S. Leupold, Nucl. Phys. A813, 96 (2008).

 $\begin{array}{rcl}
\theta &=& \pm 2.0^{\circ}, \\
h_A &=& 2.33, \\
b_A &=& 0.16, \\
h_H &=& 0.14 \mp 0.19 \, \frac{f_H}{f}, \\
e_H &=& -0.20 \mp 0.70 \, \frac{f_H}{f}
\end{array}$

M. F. M. Lutz, S. Leupold, Nucl. Phys. A813, 96 (2008).
 S. Leupold, M. F. M. Lutz, Eur. Phys. J. A39, 205 (2009).
 C.T., S. Leupold, Phys. Lett. B691, 191 (2010).

with
$$f_H \in \left[f, \sqrt{2}f\right]$$

 $\frac{\text{For decays into dileptons:}}{\Rightarrow \text{ predictive power}}$

Decay
$$\omega \to \pi^0 l^+ l^-$$
 (I)

Isospin conservation: decay only possible via virtual ho^0 -meson

 \Rightarrow standard VMD form factor (with invariant dilepton mass q):

$$F_{\omega\pi^0}^{\rm VMD}(q) = \frac{m_\rho^2}{m_\rho^2 - q^2}$$

Decay
$$\omega \to \pi^0 \, l^+ l^-$$
 (I)

Isospin conservation: decay only possible via virtual ho^0 -meson

 \Rightarrow standard VMD form factor (with invariant dilepton mass q):

$$F_{\omega\pi^0}^{\rm VMD}(q) = \frac{m_{
ho}^2}{m_{
ho}^2 - q^2}$$

 \hookrightarrow our calculations yield an additional constant term:

$$F_{\omega\pi^0}(q) \sim h_A + \frac{-\left(m_{\omega}^2 + m_{\rho}^2\right)h_A + 8\,b_A\,m_{\pi}^2}{m_{\rho}^2 - q^2}$$

Decay $\omega ightarrow \pi^0 l^+ l^-$ (I)

- standard VMD fails to explain data
- our calculations miss only the last three data points
- reduced χ^2 for single-differential decay width:

 $\chi^2_{\rm our\ theo.}=1.8$ and $\chi^2_{\rm VMD}=4.8$

$$\begin{split} \Gamma_{\omega \to \pi^0 \mu^+ \mu^-} &= (9.74 \pm 0.30) \cdot 10^{-7} \, \text{GeV} \\ \Gamma^{\text{exp}}_{\omega \to \pi^0 \mu^+ \mu^-} &= (11.04 \pm 3.40) \cdot 10^{-7} \, \text{GeV} \\ \Gamma_{\omega \to \pi^0 e^+ e^-} &= (6.85 \pm 0.21) \cdot 10^{-6} \, \text{GeV} \end{split}$$

$$_{\omega \to \pi^0 e^+ e^-}^{\exp} = (6.54 \pm 0.51) \cdot 10^{-6} \,\mathrm{GeV}$$

(Data taken by NA60 for $\omega
ightarrow \pi^0 \mu^+ \mu^-$)

Decay
$$\eta' \to \omega e^+ e^-$$

Take into account η - η' mixing

 $\hookrightarrow \underline{\mathsf{Form factor:}}$

$$f_{\omega\eta'} = \sin\theta f_{\eta_8\omega} + \frac{f}{f_H} \cos\theta f_{\eta_1\omega}$$

Decay
$$\eta' \to \omega e^+ e^-$$

Take into account η - η' mixing

 \hookrightarrow Form factor:

$$f_{\omega\eta'} = \sin\theta f_{\eta_8\omega} + \frac{f}{f_H}\cos\theta f_{\eta_1\omega}$$

- $\hookrightarrow \bullet$ clear deviation for $\theta = \pm 2^{\circ}$
 - uncertainty caused by f_H
 - (clear) deviation from VMD

Prediction:

 $\mathsf{Br}_{\eta' \to \omega e^+ e^-} = (1.69 \pm 0.56) \cdot 10^{-4}$

Summary and Outlook

- introduced new counting scheme which treats nonets of pseudoscalar and vector mesons on same footing
- partial decay widths $\Gamma_{A\to Bl^+l^-}$ are in good agreement with the available experimental data
- $\omega \to \pi^0$ transition form factor much better described than with VMD

Summary and Outlook

- introduced new counting scheme which treats nonets of pseudoscalar and vector mesons on same footing
- partial decay widths $\Gamma_{A\to Bl^+l^-}$ are in good agreement with the available experimental data
- $\omega \to \pi^0$ transition form factor much better described than with VMD

• additional decays calculated as, e.g., $\pi^0/\eta/\eta' \rightarrow \gamma l^+ l^-/2l^+ 2l^-$ (with $e_H, h_H = 0$ so far) and $\omega \rightarrow 3\pi$

• next step: next-to-leading order calculations

Thanks for your attention.

Additional slides.

The counting scheme

Problem: infinite number of interactions terms and parameters in the chiral Lagrangian

 \hookrightarrow relevance of each term needed to make predictions \Rightarrow counting scheme

To determine counting rules:

identify soft scale Λ_{soft} and hard scale Λ_{hard} (separation of scales) \hookrightarrow can expand Lagrangian in terms of $\Lambda_{\text{soft}}/\Lambda_{\text{hard}}$

In general: soft scale = masses of particles taken as relevant degrees of freedom (DOF) hard scale = masses of particles not involved as DOF

Difficulty: identification of scales, especially if particles are generated dynamically by DOF

Idea: take light pseudoscalar and vector mesons as DOF \hookrightarrow soft scale = masses of pseudoscalars and vectors

Hadrogenesis conjecture: mass gap between DOF and other mesons

In the large-N_c limit: couplings are zero ⇒ no dynamically generated particles

For $N_C = 3$:

other low-lying mesons are dynamically generated by interactions of pseudoscalar and vector mesons

 \hookrightarrow leading-order interaction generates e.g. axial-vector resonances quite well

M. F. M. Lutz, E. E. Kolomeitsev, Nucl. Phys. A730, 392 (2004)

 \Rightarrow if one relies on hadrogenesis and takes light pseudoscalars and vector mesons as DOF, the counting rules are given by

$$D_{\mu}, m_P, m_V \sim Q.$$

 \hookrightarrow relies on a sufficiently large hard scale $\Lambda_{\rm hard} \geq (2-3)\,{\rm GeV}$

- Additionally: \bullet suppression of n-body forces $\sim N_c^{1-n/2}$
 - OZI suppression of additional traces (except the pseudoscalar singlet)

 \hookrightarrow keep large- N_c behaviour which can be seen at $N_c=3$

Representation of vector and pseudoscalar fields

Use counting scheme to derive leading-order Lagrangian for pseudoscalar mesons

$$\Phi = \begin{pmatrix} \pi^0 + \frac{1}{\sqrt{3}}\eta_8 & \sqrt{2}\pi^+ & \sqrt{2}K^+ \\ \sqrt{2}\pi^- & -\pi^0 + \frac{1}{\sqrt{3}}\eta_8 & \sqrt{2}K^0 \\ \sqrt{2}K^- & \sqrt{2}\bar{K}^0 & -\frac{2}{\sqrt{3}}\eta_8 \end{pmatrix} + \tilde{\eta}_1 \frac{f}{f_H} \sqrt{\frac{2}{3}} I_{3\times 3}$$

and light vector mesons (described by antisymmetric tensor fields)

$$\Phi_{\mu\nu} = \begin{pmatrix} \rho_{\mu\nu}^{0} + \omega_{\mu\nu} & \sqrt{2}\rho_{\mu\nu}^{+} & \sqrt{2}K_{\mu\nu}^{+} \\ \sqrt{2}\rho_{\mu\nu}^{-} & -\rho_{\mu\nu}^{0} + \omega_{\mu\nu} & \sqrt{2}K_{\mu\nu}^{0} \\ \sqrt{2}K_{\mu\nu}^{-} & \sqrt{2}\bar{K}_{\mu\nu}^{0} & \sqrt{2}\varphi_{\mu\nu} \end{pmatrix}$$

η - η' mixing (detailed) (I)

Pseudoscalar meson nonet Φ includes non-physical singlet state $\tilde{\eta}_1$ and octet state η_8 :

$$\Phi = \begin{pmatrix} \pi^{0} + \frac{1}{\sqrt{3}}\eta_{8} & \sqrt{2}\pi^{+} & \sqrt{2}K^{+} \\ \sqrt{2}\pi^{-} & -\pi^{0} + \frac{1}{\sqrt{3}}\eta_{8} & \sqrt{2}K^{0} \\ \sqrt{2}K^{-} & \sqrt{2}\bar{K}^{0} & -\frac{2}{\sqrt{3}}\eta_{8} \end{pmatrix} + \tilde{\eta}_{1}\frac{f}{f_{H}}\sqrt{\frac{2}{3}}I_{3\times3}$$
$$= \eta_{8}\lambda^{8} + \tilde{\eta}_{1}\frac{f}{f_{H}}\lambda^{0}$$

 \Rightarrow physical fields η and η' are defined via

$$\eta = -\tilde{\eta}_1 \sin \theta + \eta_8 \cos \theta, \eta' = \tilde{\eta}_1 \cos \theta + \eta_8 \sin \theta$$

with to be determined mixing angle $\boldsymbol{\theta}$

η - η' mixing (detailed) (II)

LO kinetic and mass terms for the pseudoscalar mesons:

$$\mathcal{L}_{\text{pseudo}} = -\frac{1}{4} \operatorname{tr} \left\{ \partial_{\mu} \Phi \, \partial^{\mu} \Phi \right\} + \frac{1}{2} \left(1 - \frac{f^2}{f_H^2} \right) \partial_{\mu} \tilde{\eta}_1 \, \partial^{\mu} \tilde{\eta}_1 - \frac{1}{2} \, m_H^2 \tilde{\eta}_1^2 \\ - \frac{1}{4} \operatorname{tr} \left\{ \Phi \chi_0 \Phi \right\} + \frac{f \, b_H}{\sqrt{6} f_H} \operatorname{tr} \left\{ \Phi \chi_0 \right\} \tilde{\eta}_1 + \frac{f^2 g_0}{2 f_H^2} \operatorname{tr} \left\{ \chi_0 \right\} \tilde{\eta}_1^2$$

Definition: no mixing between η and η'

 \Rightarrow no mass terms proportional to $\eta \cdot \eta'$ in the Lagrangian \mathcal{L}_{pseudo} \Rightarrow relation for mixing angle θ :

$$\cos(2\theta) = \frac{m_{\eta'}^2 + m_{\eta}^2 - \frac{2}{3} \left(4m_K^2 - m_{\pi}^2\right)}{m_{\eta'}^2 - m_{\eta}^2}$$

 $\Rightarrow \theta = -10.7^{\circ}$, independent of f_H

"Literature" value $\theta = -20^\circ$ for $b_H = 0$ and $f_H = f.$

η - η' mixing (detailed) (III)

<u>Alternative</u>: use relation for the mixing angle to calculate η' -mass and η -mass as functions of θ and $(m_{\eta'}^2 + m_{\eta}^2)^{\exp}$.

 \Rightarrow less than 5% discrepancy between theoretical and experimental masses for $|\theta| \leq 15^\circ$

 \Rightarrow use θ as additional open parameter

Why we don't fix θ

Mixing angle θ could be fixed by mass term for pseudoscalar mesons \Rightarrow can determine "experimental width" for decays into η_1 and η_8 :

$$\Gamma_{\eta_8} = \cos^2\theta \,\Gamma_{\eta} + \sin^2\theta \,\Gamma_{\eta'} + 2\sin\theta \,\cos\theta \,\sqrt{\Gamma_{\eta} \,\Gamma_{\eta'}}$$
$$\frac{f_H^2}{f^2} \,\Gamma_{\eta_1} = \sin^2\theta \,\Gamma_{\eta} + \cos^2\theta \,\Gamma_{\eta'} - 2\sin\theta \,\cos\theta \,\sqrt{\Gamma_{\eta} \,\Gamma_{\eta'}}$$

 $\hookrightarrow \Gamma_{\eta_8}$ depends only on h_A and b_A , Γ_{η_1} depends on all parameters

- $\hookrightarrow \bullet h_A$ and b_A determined by $\omega \to \pi^0 \gamma$, $\omega \to \eta_8 \gamma$ and $\phi \to \eta_8 \gamma$ \Rightarrow overdetermined, no good description of all three decays
 - e_H , h_H and f_H determined by $\omega \to \eta_1 \gamma$ and $\phi \to \eta_1 \gamma$ \Rightarrow underdetermined, i.e. unfixed parameter

Decay $\eta' \rightarrow \omega e^+ e^-$ (details)

- $\bullet\,$ only virtual $\omega\,$ meson possible
- additional contributions from terms proportional to h_H and e_H
- take η - η' mixing into account: $f_{\omega\eta'} = \sin\theta f_{\eta_8\omega} + \frac{f}{f_H} \cos\theta f_{\eta_1\omega}$

Again, one gets an additional constant term (compared to VMD):

$$f_{\eta_8\omega}(q) \sim h_A + \frac{-2m_{\omega}^2 h_A + 8m_{\pi}^2 b_A}{m_{\omega}^2 - q^2},$$

$$f_{\eta_1\omega}(q) \sim \sqrt{2} \left\{ h_A - 2\sqrt{6} e_H + \frac{-2m_{\omega}^2 h_A + 8m_{\pi}^2 b_A + 4\sqrt{6} m_V^2 h_H}{m_{\omega}^2 - q^2} \right\}$$

Decay $\omega \to \eta l^+ l^-$

- $\bullet\,$ only virtual $\omega\,$ meson possible
- additional contributions from terms proportional to h_H and e_H
- take η - η' mixing into account: $f_{\omega\eta} = \cos\theta f_{\omega\eta_8} \frac{f}{f_H}\sin\theta f_{\omega\eta_1}$

Again, one gets an additional constant term (compared to VMD):

$$f_{\omega\eta_8}(q) \sim h_A + \frac{-2m_{\omega}^2 h_A + 8m_{\pi}^2 b_A}{m_{\omega}^2 - q^2},$$

$$f_{\omega\eta_1}(q) \sim \sqrt{2} \left\{ h_A - 2\sqrt{6} e_H + \frac{-2m_{\omega}^2 h_A + 8m_{\pi}^2 b_A + 4\sqrt{6} m_V^2 h_H}{m_{\omega}^2 - q^2} \right\}$$

- form factor also depends on h_H , e_H and θ
 - $\hookrightarrow \mbox{difference between parameter} \\ \mbox{sets for } \theta = \pm 2^\circ \\$
- deviation from VMD

Predictions:

$$Br_{\omega \to \eta \mu^+ \mu^-} = (1.01 \pm 0.08) \cdot 10^{-9}$$
$$Br_{\omega \to \eta e^+ e^-} = (3.39 \pm 0.26) \cdot 10^{-6}$$

Decay $\phi \to \eta \, l^+ l^-$

- data show relatively large error bars
 ⇒ no assessment possible
- our theory shows deviation from VMD

$$\begin{split} \Gamma_{\phi \to \eta \mu^+ \mu^-} &= (2.83 \pm 0.33) \cdot 10^{-8} \, \mathrm{GeV} \\ \Gamma^{\mathrm{exp}}_{\phi \to \eta \mu^+ \mu^-} &< 4.00 \cdot 10^{-8} \, \mathrm{GeV} \end{split}$$

$$\begin{split} \Gamma_{\phi \to \eta e^+ e^-} &= (4.81 \pm 0.59) \cdot 10^{-7} \, \mathrm{GeV} \\ \Gamma^{\mathrm{exp}}_{\phi \to \eta e^+ e^-} &= (4.90 \pm 0.43) \cdot 10^{-8} \, \mathrm{GeV} \end{split}$$

Data taken at VEPP-2M for $\phi \to \eta e^+ e^-$ M.N. Achasov et al., Phys. Lett **B504**, 275 (2001)