

Final State Interactions and Polarization Observables in the Process $\vec{p}p \rightarrow pK^+\Lambda$

MESON 2012 | Matthias Röder for the COSY-TOF Collaboration

Motivation

Final State Interactions

- Goal: Improve the yet scarce data on NY scattering
- Method: Polarized beam should allow for the determination of the spin resolved p\lambda-scattering length Gasparyan et. al. Phys.Rev C69
- Deliver a fundamental parameter of NY interaction

Λ Polarization Observables

- Goal: Study of the pK⁺ \(\Lambda \) production mechanism
- Method: Polarized beam and self analyzing Λ decay allow to determine the Λ-depolarization
- Sensitive to Kaon or Pion exchange

The COSY-TOF Experiment

- Scintillators for timing and dE/dx measurement
- Straw Tube Tracker (STT) and Silicon Quirl (SQT) for precise track reconstruction

pK⁺∧ Event Reconstruction and Selection

- Straw drift times <u>calibration</u> track-wire distances
- Delayed vertex with primary vertex in decay plane
- Complete kinematic fit to track-wire distances
- ⇒ 42 000 events from 6 days beam time (MC study: 20% reconstruction efficiency)

1

Event Sample Check: A Decay Length

- Data and MC in good agreement
- Correct lambda lifetime ⇒ "low" background contamination

- Full kinematic acceptance
- Cusp structure at $p\Sigma^0$ threshold in $m_{p\Lambda}$!
- Cusp structure at $K\Sigma^0$ threshold in $m_{K\Lambda}$?
- FSI and N^* -resonances can explain structure underneath

Λ Polarization P_N

- Self analyzing Λ decay $\Rightarrow \Lambda$ polarization (P_N)
- 61% polarized beam $\Rightarrow \Lambda$ depolarization (D_{NN}):

A Depolarization

- D_{NN} forward agrees with DISTO M.Maggiora Nucl.Phys. A691
 - ⇒ Kaon exchange dominates production process in the Laget Model (N*-Resonances neglected)
- Differences for backward \(\Lambda \)s
 - Trend to zero expected from gluon-exchange models
- Better statistics needed for competetive results

p∧ Invariant Mass Spectrum

- Resolution $\sigma \approx 1.1 \, \text{MeV}/c^2$
- Cusp at $p\Sigma^0$ threshold (shape?, position?, strength?)
- p Λ final state interaction at low $m_{p\Lambda}$

p∧ Final State Interactions

- $\frac{1}{|\vec{p}_p \vec{p}_{\Lambda}|} \frac{d\sigma^2}{dm_{p\Lambda}d\Omega} = |A_{eff}(m_{p\Lambda})|^2 \propto \text{effective p} \Lambda \text{ scattering length}$
- Fit the shape of the effective scattering amplitude
 ⇒ Effective p∧ scattering length a = -1.28 ± 0.11 ± 0.3 fm,
- Idea: $|A_t|^2 \propto K^+$ P wave (in FSI region)

K⁺ Analyzing Power

- Kaon analyzing power for full mpA range
- Partial wave analysis with symmetric (S*P waves) (red) and asymmetric (S*D waves) (blue) contributions
- Symmetric part only from p\ spin triplet scattering
 - ⇒ Use for extraction of spin triplet scattering length

K^+ Analyzing Power: m_{ph} Dependence

- $m_{p\Lambda} < m_0 + 40 \,\text{MeV/}c^2$: Analyzing power $< 11\% \,(3\sigma)$ ⇒ High statistics needed for scattering length determination
- This dependence on $m_{p\Lambda}$ is unexpected
 - Consistent with no spin triplet scattering at all [HIRES]
 - Other explanation: absence/cancellation of P wave
- Measurement with better statistics is important

Cusp at $p_{beam} = 3.049 \, GeV/c$ Old Detector Setup

E. Doroshkevich

- Different detector setup and independent Analysis by K. Ehrhardt (thesis)
- Inferior resolution but clear confirmation of Cusp structure
- Paper with focus on Cusp in preparation

$pK^+ \Lambda$ Dalitz Plot $p_{\text{beam}} = 2.70 \, GeV/c$

F. Hauenstein

- 100.000 of 200.000 events analyzed
- FSI and phasespace dominate
 - ⇒ Cusp strength energy dependent (Not a phasespace effect)
 - ⇒ Ideal beam momentum for FSI studies

K^+ Analyzing Power: m_{ph} Dependence

- $m_{p\Lambda} < m_0 + 20 \,\text{MeV/}c^2$: Analyzing power $\approx 15\%$
- ⇒ scattering length determination in progress
 - Dependence on $m_{p\Lambda}$ is flat inside statistical limits
 - ⇒ Consistent with only spin triplet scattering
 - Factor 2 more events available for analysis

Conclusions and Outlook

Conclusions

- Straw Tube Tracker: 20% reconstruction efficiency for the $pK\Lambda$ final state and $\sigma \approx 1 \text{ MeV}/c^2$ resolution in $m_{p\Lambda}$
- Determination of Λ polarization observables especially the Λ depolarization
- Determination of the effective p\Lambda scattering length unexpected behavior of K⁺ analyzing power discovered

Outlook

- 6 weeks beam time by the end of the year
 - 1 week with $p_{\text{beam}} = 2.95 \,\text{GeV}/c^2$
 - 4 weeks with highest possible $p_{\rm beam}$ (\approx 3.3 GeV/ c^2)
- Advanced studies of the cusp structure
- Determination of the spin-triplet scattering for 2.7 GeV/c²

BACKUP

pK⁺∧ Event Reconstruction

Parametrization $pp \rightarrow pK^+\Lambda \rightarrow pK^+\pi^-p$ (11 parameter):

- Primary vertex position v_x, v_y, v_z
- $\{pp\} \rightarrow K^+\{p\Lambda\}$: K^+ in CMS $\theta^*_{K^+}, \phi^*_{K^+}$; $m_{p\Lambda}$
- $\{p\Lambda\} \to p\Lambda$: p in the $\{p\Lambda\}$ system $\theta_p^{**}, \phi_p^{**}$
- $\Lambda \to p\pi^-$: Λ decay length s_{Λ} ; Pion in Λ -System $\theta_{\pi}^{***}, \phi_{\pi}^{***}$

Kinematic Fit (MINUIT)

$pK^+\Sigma^0$ Background Study

- $pK^+\Sigma^0$ is broadly distributed under the signal peak
- χ^2 of kinematic fit reduces contamination to < 5%