

# INVESTIGATION OF THE REACTION $dd \rightarrow {}^{3}Hen\pi^{0}$ AT 1.2 GEV/C BEAM MOMENTUM WITH WASA-AT-COSY

# PAWEŁ PODKOPAŁ FOR THE WASA-AT-COSY COLLABORATION

# **Charge Symmetry Breaking**

Use CSB to probe light quarks mass difference - a fundamental parameter of SM

|                          | Symmetry                                       | Probes                        |  |  |
|--------------------------|------------------------------------------------|-------------------------------|--|--|
| General Isospin Symmetry | any rotation in isospin space                  | quark mass, e.m. interactions |  |  |
| Charge Symmetry          | $u \leftrightarrow d$ , $ \pi^0 > = - \pi^0 >$ | quark mass                    |  |  |

#### dd $\rightarrow$ <sup>4</sup>He $\pi^0$ :

Isospin Symmetry Breaking:  $0+0\rightarrow0+1$ Charge Symmetry breaking:  $\sigma_{CS} = 0$ ,  $\sigma_{CSB} \sim |M_{CSB}|^2$  no CSC background

#### **Recent activities**

Theory collaboration working on consistent analysis within  $\chi$ PT of:

- forward-backward asymmetry in np  $\rightarrow$  d $\pi^{0}$  , Opper et al. PRL91 (2003) 212302
- cross section at threshold for dd  $\rightarrow$  <sup>4</sup>He $\pi^0$ , Stephenson et al., PRL 91 (2003) 142302

#### Additional observables needed:

- *p*-wave contribution in dd  $\rightarrow$  <sup>4</sup>He $\pi^0$  at higher energies
- measurement of charge symmetry conserving reaction dd  $\rightarrow$  <sup>3</sup>Hen $\pi^0$

### Measurement of d d $\rightarrow$ <sup>3</sup>He n $\pi^{0}$ as a first step towards d d $\rightarrow$ <sup>4</sup>He $\pi^{0}$

- same initial state as in d d  $\rightarrow$   $^4\text{He}$   $\pi^{\scriptscriptstyle 0}$
- study the isospin conserving pion production in 4N system:
- for *s* and *p* wave pion production the same partial waves in initial state



- test full ChPT calculations for CSC case
- control the initial state in d d  $\rightarrow$   $^4\text{He}$   $\pi^{\rm 0}$
- no data available yet

### Signature of the reaction



## Luminosity determination using dd $\rightarrow$ <sup>3</sup>Hen

- clean identification of dd  $\rightarrow$  <sup>3</sup>Hen - using data for dd  $\rightarrow$  <sup>3</sup>Hp

G. Bizhard et.al., Phys. Rev. C 22 (1980)  $d d \rightarrow {}^{3}He n p=1.651, 1.89, 1.992, 2.492 (GeV/c)$  $d d \rightarrow {}^{3}H p \quad p=1.109, \ 1.38, \ 1.493, \ 1.651, \ 1.787 \ (GeV/c)$ 

Total and differential cross section match at 1.651 GeV/c

- parametrize angular distribution for 3 beam mom.

- for selected angles, interpolation to 1.2 GeV/c





## Modelling the dd $\rightarrow$ $^{3}\text{Hen}\pi^{0}$

• 2-body dp  $\rightarrow$  <sup>3</sup>He $\pi^{0}$  (pd $\rightarrow$ <sup>3</sup>He $\pi^{0}$ ) quasi-free reaction (neutron spectator)



3-body partial wave decomposition

Neutron momentum calculated from deuteron wave function (based on Paris potential)

$$\vec{d}p \rightarrow {}^{3}\text{He}\pi^{0}$$

N. Nikulin at.al, Phys. Rev. C54 (1996) Parametrized total and differential distributions

Total cross section for target + beam spectator  $\sigma_{tot} = 0.596 \ \mu b + 0.596 \ \mu b = 1.192 \ \mu b$ 



# Partial wave decomposition: considered contributions L\_{\_{\!\!\!\!\!\pi}} + L\_{\_{\!\!\!\!\!Hen}} $\leq$ 1

| dd                                                                                                                    | ( <sup>3</sup> He n) π <sup>0</sup> | S <sub>3Hen</sub> | L <sub>3Hen</sub> | j <sub>3Hen</sub> | L <sub>π</sub> | J |                                             |
|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------|-------------------|-------------------|----------------|---|---------------------------------------------|
| <sup>3</sup> P <sub>0</sub>                                                                                           | (1S <sub>0</sub> ) s                | 0                 | 0                 | 0                 | 0              | 0 |                                             |
| <sup>3</sup> P <sub>1</sub>                                                                                           | ( <sup>3</sup> S <sub>0</sub> ) s   | 1                 | 0                 | 1                 | 0              | 1 | $SS \to A_0$                                |
| <sup>5</sup> D <sub>1</sub>                                                                                           | (1S <sub>0</sub> ) p                | 0                 | 0                 | 0                 | 1              | 1 | •                                           |
| <sup>1</sup> S <sub>0</sub> , <sup>5</sup> D <sub>0</sub>                                                             |                                     | 1 <b>Г</b>        | 0                 | 1                 | 1              | 0 | $Sp \rightarrow A_1, A_2$                   |
| <sup>5</sup> D <sub>1</sub>                                                                                           | ( <sup>3</sup> S <sub>0</sub> ) p   | 1 -               | 0                 | 1                 | 1              | 1 | 18 transition amplitude                     |
| <sup>5</sup> S <sub>2</sub> , <sup>5</sup> D <sub>2</sub> , <sup>5</sup> G <sub>2</sub> , <sup>1</sup> D <sub>2</sub> |                                     | 1 L               | 0                 | 1                 | 1              | 2 | + $({}^{3}\text{He}\pi^{0})n_{\text{spec}}$ |
| <sup>5</sup> D <sub>1</sub>                                                                                           | (1P <sub>1</sub> ) s                | 0                 | 1                 | 1                 | 0              | 1 |                                             |
| <sup>1</sup> S <sub>0</sub> , <sup>5</sup> D <sub>0</sub>                                                             | ( <sup>3</sup> P <sub>0</sub> ) s   | 1                 | 1                 | 0                 | 0              | 0 | $Ps \to A  A$                               |
| <sup>5</sup> D <sub>1</sub>                                                                                           | ( <sup>3</sup> P <sub>1</sub> ) s   | 1                 | 1                 | 1                 | 0              | 1 | 3,74                                        |
| <sup>5</sup> S <sub>2</sub> , <sup>5</sup> D <sub>2</sub> , <sup>5</sup> G <sub>2</sub> , <sup>1</sup> D <sub>2</sub> | ( <sup>3</sup> P <sub>2</sub> ) s   | 1                 | 1                 | 2                 | 0              | 2 | $\checkmark$                                |

 $\begin{array}{ll} \mbox{Approx:} \ \Psi_{_{pw}}\left(QR\right) \rightarrow j_{_{L}}\!(QR) \propto Q^{L} \quad \Rightarrow \ \mbox{amplitudes proportional} \sim q^{L_{\pi}} \, p^{L_{Hen}} \end{array}$ 

$$\frac{d^4\sigma}{2\pi dM_{23}d\cos\theta_p d\cos\theta_q d\phi} = \frac{pq}{32(2\pi)^5 sP_a^*(2s_a+1)(2s_b+1)} \left[ A_0 + A_1q^2 + A_3p^2 + \frac{1}{4}A_2q^2\left(1 + 3\cos 2\theta_q\right) + \frac{1}{4}A_4p^2\left(1 + 3\cos 2\theta_p\right) + A_5pq\cos\theta_p\cos\theta_q + A_6pq\sin\theta_p\sin\theta_q\cos\phi \right]$$
  
interference terms  $A_5, A_6$ 



preliminary

Data described by incoherent sum of 3 body + quasi free

- Total cross:  $\sigma_{tot}$  = (3.98 ± 0.01<sub>stat.</sub> ± 0.55<sub>sys.</sub>) µb Models reproduce data fairly well:
  - about 1/3 quasi-free (matches model calculation)
  - pS and sP of similar strength

## Momentum dependence of partial waves



Possible point of interest: 4 isospin=1 states in the <sup>3</sup>He-n Spectrum L=1, J=0,1,2

## Summary

• The differential and total cross section for d d  $\rightarrow$  <sup>3</sup>He n  $\pi^{0}$  measured at beam momentum 1.2 GeV/c (Q=40 MeV) have been evaluated:  $\sigma_{tot} = (3.98 \pm 0.01_{stat.} \pm 0.55_{sys.}) \,\mu b$  preliminary

• Differential cross section described by sum of quasi-free pion production and 3-body partial wave decomposition

• Models can serve as a guidance for microscopic description within ChpT

- 30% of cross section can be reproduced by quasi-free mechanism
- important *p* wave contributions
- pS and sP of similar strength

preliminary

- results are being finalized

# Outlook

Outlook:

- 2-week pilot measurement of d d  $\rightarrow$   $^{4}\text{He}$   $\pi^{0}$  at  $p_{b}$  = 1.2 GeV/c
- indication of d d  $\rightarrow$  <sup>4</sup>He  $\pi^{0}$  signal (first analysis)
- consistent with estimated cross section  $\sigma$ =75 pb



Challenges:

- Separation between <sup>4</sup>He/<sup>3</sup>He
- Background supression

- to be finalized: total cross section / upper limit

# Outlook I

### Future perspectives:

- High statistics measurements of d d  $\rightarrow$  ^4He  $\pi^{\rm 0}$  with optimized detection setup
- one block of beam time with modified detector setup
   use TOF better background suppression and energy reconstruction



- several energies (e.g. 350MeV, 450MeV, 560MeV), extract energy dependence of cross section
- highest energy: use d d  $\rightarrow$  ^4He  $\pi^{0}\,\pi^{0}\,as$  a reference for ^4He reconstruction

### Partial wave decomposition

$$\sigma = \frac{1}{2\sqrt{\lambda(s, M_{a}^{2}, M_{b}^{2})(2\pi)^{5}}} \int \prod_{i=1}^{3} \frac{d^{3}p_{i}}{2E_{i}} \delta^{4} \left( P_{a} + P_{b} - \sum_{j=1}^{3} P_{j} \right) |T|^{2} \xrightarrow{\text{integration}} \frac{d^{4}\sigma}{2\pi dM_{23} d\cos\theta_{q} d\cos\theta_{p} d\phi} = \frac{1}{32(2\pi)^{5} s P_{a}^{*}} pq|T|^{2}} |T|^{2} = \frac{1}{(2s_{a}+1)(2s_{b}+1)} \sum_{\substack{m_{1},m_{2},m_{3} \\ m_{1},m_{2},m_{3}}} |T_{m_{1},m_{2},m_{3}}^{m_{a},m_{b}}|_{2} |T|^{2} \sum_{\substack{s_{1},L_{i},s_{23},j_{23}, \\ L_{23},L_{1},j_{1},j_{1}}} \langle s_{a}, m_{a}, s_{b}, m_{b}|s_{i}, m_{a} + m_{b} \rangle \langle L_{i}, 0, s_{i}, m_{a} + m_{b}|J, m_{a} + m_{b} \rangle \langle s_{2}, m_{2}, s_{3}, m_{3}|s_{23}, m_{2} + m_{3} \rangle \langle s_{1}, m_{1}, L_{1}, m_{L_{1}}|j_{1}, m_{j_{1}} \rangle \langle s_{23}, m_{2} + m_{3}, L_{23}, m_{L_{23}}|j_{23}, m_{j_{23}} \rangle \langle j_{1}, m_{j_{1}}, j_{23}, m_{j_{23}}|J, m_{a} + m_{b} \rangle \langle \delta_{\Pi_{i},\Pi_{i}} \delta_{identity} a_{s_{i},L_{i},s_{23},j_{23},L_{23},L_{1},j_{1},J} \sqrt{2L_{i} + 1} Y_{L_{23}}^{m_{L_{23}}}(\hat{p}) Y_{L_{1}}^{m_{L_{1}}}(\hat{q})$$

$$M_{PW}(QR) \rightarrow j_{L}(QR) \propto Q^{L}$$
Approximation: Amplitudes proportional to:
$$q^{L_{i}} p^{L_{i}}$$

$$M_{i}^{d}\sigma$$

$$M_{i}^{d}\sigma$$

$$M_{i} = \frac{1}{2(2\pi)^{5} s P_{a}^{*}} p_{i}^{d} = \frac{1}{2(2\pi)^{5} s P_{a}^{*}} p_{i}^{d} p_$$

 $\frac{d^{2}G}{2\pi dM_{23}d\cos\theta_{p}d\cos\theta_{q}d\phi} = \frac{pq}{32(2\pi)^{5}sP_{a}^{*}(2s_{a}+1)(2s_{b}+1)} \left[ A_{0} + A_{1}q^{2} + A_{3}p^{2} + \frac{1}{4}A_{2}q^{2}\left(1 + 3\cos2\theta_{q}\right) + \frac{1}{4}A_{4}p^{2}\left(1 + 3\cos2\theta_{p}\right) + A_{5}pq\cos\theta_{p}\cos\theta_{q} + A_{6}pq\sin\theta_{p}\sin\theta_{q}\cos\phi \right]$ 

## Differential distributions before acceptance correction



- fit results used for acceptance corrections

## Differential distributions for dd $\rightarrow$ $^{3}\text{Hen}\pi^{0}$

- Data after acceptance corrections using parameters from the fit before acc. corrections

 $B = A_0 I_{sS} + A_1 I_{pS} + A_3 I_{sP}$ 

$$I_{sS} = \int_{(M_2 + M_3)^2}^{(\sqrt{s} - M_1)^2} pq dM_{23} \qquad I_{sP} = \int_{(M_2 + M_3)^2}^{(\sqrt{s} - M_1)^2} p^3 q dM_{23} \qquad I_{pS+sP} = \int_{(M_2 + M_3)^2}^{(\sqrt{s} - M_1)^2} p^2 q^2 dM_{23} \qquad I_{pS} = \int_{(M_2 + M_3)^2}^{(\sqrt{s} - M_1)^2} pq^3 dM_{23}$$



## Luminosity determination using dd $\rightarrow$ <sup>3</sup>Hen

- clean identification of dd  $\rightarrow$   $^{3}\text{Hen}$  - using data for dd  $\rightarrow$   $^{3}\text{Hp}$ 

G. Bizhard et.al., Phys. Rev. C 22 (1980)  $d d \rightarrow {}^{3}He n p=1.651, 1.89, 1.992, 2.492 (GeV/c)$   $d d \rightarrow {}^{3}H p p=1.109, 1.38, 1.493, 1.651, 1.787 (GeV/c)$ Total and differential cross section match

- parametrize angular distribution for 3 beam mom.

- for selected angles, interpolation to 1.2 GeV/c



