Vieson photoproduction with CLAS

Eugene Pasyuk

For the CLAS Collaboration

KRAKÓW, POLAND 31 May - 5 June 2012

Outline

Introduction

- Experimental details
- Selected results: single pion photoproduction
- Summary

Baryon Resonance Spectrum

- Masses, widths, and coupling constants not well known for many resonances
- Most models predict more resonance states than observed

4 Complex amplitudes: 16 real polarization observables.

Complete measurement from 8 carefully chosen observables.

 πN has large cross section

but in KY recoil is self-analysing

4 Complex amplitudes: 16 real polarization observables.

Complete measurement from 8 carefully chosen observables.

πN has large cross section

TTNI.

but in KY recoil is self-analysing

	IIIN							NI	
ſ	waaali tawa		Symbol	Transversity	Experiment	Type		tour	
recoil larg		Ŷ	J	representation	required		Y	larg	reco
			$\bigcirc d\sigma/dt$	$ b_1 ^2 + b_2 ^2 + b_3 ^2 + b_4 ^2$	$\{-; -; -\}$	S			
			$\Sigma d\sigma/dt$	$ b_1 ^2 + b_2 ^2 - b_3 ^2 - b_4 ^2$	$\{L(\frac{1}{2}\pi,0);-;-\}$				
			$Td\sigma/dt$	$ b_1 ^2 - b_2 ^2 - b_3 ^2 + b_4 ^2$	$\{-; y; -\}$				
			$Pd\sigma/dt$	$ b_1 ^2 - b_2 ^2 + b_3 ^2 - b_4 ^2$	$\{-;-;y\}$	0			
			$Gd\sigma/dt$	$2 \operatorname{Im}(b_1 b_3^* + b_2 b_4^*)$	$\{L(\pm \frac{1}{4}\pi); z; -\}$	BT			
			$Hd\sigma/dt$	$-2 \operatorname{Re}(b_1 b_3^* - b_2 b_4^*)$	$\{L(\pm \frac{1}{4}\pi); x; -\}$				
			$Ed\sigma/dt$	$-2 \operatorname{Re}(b_1 b_3^* + b_2 b_4^*)$	$\{C; z; -\}$				
			$Fd\sigma/dt$	$2 \operatorname{Im}(b_1 b_3^* - b_2 b_4^*)$	$\{C; x; -\}$				
			$O_x d\sigma/dt$	$-2 \operatorname{Re}(b_1 b_4^* - b_2 b_3^*)$	$\{L(\pm \frac{1}{4}\pi); -; x'\}$	BR			
			$O_z d\sigma/dt$	$-2 \operatorname{Im}(b_1 b_4^* + b_2 b_3^*)$	$\{L(\pm \frac{1}{4}\pi); -; z'\}$				
			$C_x d\sigma/dt$	$2 \operatorname{Im}(b_1 b_4^* - b_2 b_3^*)$	$\{C; -; x'\}$				
			$C_z d\sigma/dt$	$-2 \operatorname{Re}(b_1 b_4^* + b_2 b_3^*)$	$\{C; -; z'\}$				
			$T_x d\sigma/dt$	$2 \operatorname{Re}(b_1 b_2^* - b_3 b_4^*)$	$\{-; x; x'\}$	TR			
			$T_z d\sigma/dt$	$2 \text{ Im}(b_1 b_2^* - b_3 b_4^*)$	$\{-; x; z'\}$				
			$L_x d\sigma/dt$	$2 \operatorname{Im}(b_1 b_2^* + b_3 b_4^*)$	$\{-; z; x'\}$				
			$L_x d\sigma/dt$	$2 \operatorname{Re}(b_1 b_2^* + b_3 b_4^*)$	$\{-;z;z'\}$				
			I S Barker	A Donnachie J K Storrow Nuc	Phys B95 347 (1975				
			I. D. Dal Ku,						

4 Complex amplitudes: 16 real polarization observables.

Complete measurement from 8 carefully chosen observables.

 πN has large cross section

but in KY recoil is self-analysing

πΝ						KY	
roccil torg	Symbol	Transversity	Experiment	Type		tord	roccil
recon larg y		representation	required		Y	larg	recon
	$\bigcirc d\sigma/dt$	$ b_1 ^2 + b_2 ^2 + b_3 ^2 + b_4 ^2$	$\{-; -; -\}$	S			
	$\Sigma d\sigma/dt$	$ b_1 ^2 + b_2 ^2 - b_3 ^2 - b_4 ^2$	$\{L(\frac{1}{2}\pi,0);-;-\}$				
	$Td\sigma/dt$	$ b_1 ^2 - b_2 ^2 - b_3 ^2 + b_4 ^2$	$\{-; y; -\}$				
	$Pd\sigma/dt$	$ b_1 ^2 - b_2 ^2 + b_3 ^2 - b_4 ^2$	$\{-; -; y\}$	0			
	$Gd\sigma/dt$	$2 \operatorname{Im}(b_1 b_3^* + b_2 b_4^*)$	$\{L(\pm \frac{1}{4}\pi); z; -\}$	BT			
	$Hd\sigma/dt$	$-2 \operatorname{Re}(b_1 b_3^* - b_2 b_4^*)$	$\{L(\pm \frac{1}{4}\pi); x; -\}$				
	$Ed\sigma/dt$	$-2 \operatorname{Re}(b_1 b_3^* + b_2 b_4^*)$	$\{C; z; -\}$				
	$Fd\sigma/dt$	$2 \text{ Im}(b_1 b_3^* - b_2 b_4^*)$	$\{C; x; -\}$				
	$O_x d\sigma/dt$	$-2 \operatorname{Re}(b_1 b_4^* - b_2 b_3^*)$	$\{L(\pm \frac{1}{4}\pi); -; x'\}$	BR			
	$O_z d\sigma/dt$	$-2 \operatorname{Im}(b_1 b_4^* + b_2 b_3^*)$	$\{L(\pm \frac{1}{4}\pi); -; z'\}$				
	$C_x d\sigma/dt$	$2 \text{ Im}(b_1 b_4^* - b_2 b_3^*)$	$\{C; -; x'\}$	0			
	$C_z d\sigma/dt$	$-2 \operatorname{Re}(b_1 b_4^* + b_2 b_3^*)$	$\{C; -; z'\}$		\sim		
	$T_x d\sigma/dt$	$2 \operatorname{Re}(b_1 b_2^* - b_3 b_4^*)$	$\{-; x; x'\}$	TR			
	$T_z d\sigma/dt$	$2 \text{ Im}(b_1 b_2^* - b_3 b_4^*)$	$\{-; x; z'\}$				
	$L_x d\sigma/dt$	$2 \text{ Im}(b_1 b_2^* + b_3 b_4^*)$	$\{-; z; x'\}$				
	$L_x d\sigma/dt$	$2 \operatorname{Re}(b_1 b_2^* + b_3 b_4^*)$	$\{-; z; z'\}$				
			L DI DOS 245 (1055				
	I. S. Barker,	A. Donnachie, J. K. Storrow, Nuc	ci. Phys. B95 347 (1975).			

JSA Jefferson Lab

4 Complex amplitudes: 16 real polarization observables.

Complete measurement from 8 carefully chosen observables.

 πN has large cross section

but in KY recoil is self-analysing

10

		IIIN							n		
	roppil	tord	N	Symbol	Transversity	Experiment	Type	N	tord	rocoil	1
l	recon	larg	Y		representation	required		Y	laig	Tecon	
				$\bigcirc d\sigma/dt$	$ b_1 ^2 + b_2 ^2 + b_3 ^2 + b_4 ^2$	$\{-; -; -\}$	S				·
				$\frown \Sigma d\sigma/dt$	$ b_1 ^2 + b_2 ^2 - b_3 ^2 - b_4 ^2$	$\{L(\frac{1}{2}\pi,0);-;-\}$	0	<			
				$Td\sigma/dt$	$ b_1 ^2 - b_2 ^2 - b_3 ^2 + b_4 ^2$	$\{-; y; -\}$	0				
				$Pd\sigma/dt$	$ b_1 ^2 - b_2 ^2 + b_3 ^2 - b_4 ^2$	$\{-;-;y\}$	0				
				$Gd\sigma/dt$	$2 \operatorname{Im}(b_1 b_3^* + b_2 b_4^*)$	$\{L(\pm \frac{1}{4}\pi); z; -\}$	BT				
				$Hd\sigma/dt$	$-2 \operatorname{Re}(b_1 b_3^* - b_2 b_4^*)$	$\{L(\pm \frac{1}{4}\pi); x; -\}$					
				$Ed\sigma/dt$	$-2 \operatorname{Re}(b_1 b_3^* + b_2 b_4^*)$	$\{C; z; -\}$					
				$Fd\sigma/dt$	$2 \operatorname{Im}(b_1 b_3^* - b_2 b_4^*)$	$\{C; x; -\}$					
				$O_x d\sigma/dt$	$-2 \operatorname{Re}(b_1 b_4^* - b_2 b_3^*)$	$\{L(\pm \frac{1}{4}\pi); -; x'\}$	BR				
				$O_z d\sigma/dt$	$-2 \operatorname{Im}(b_1 b_4^* + b_2 b_3^*)$	$\{L(\pm \frac{1}{4}\pi); -; z'\}$	0	<hr/>			
				$C_x d\sigma/dt$	$2 \operatorname{Im}(b_1 b_4^* - b_2 b_3^*)$	$\{C; -; x'\}$	0				
				$C_z d\sigma/dt$	$-2 \operatorname{Re}(b_1 b_4^* + b_2 b_3^*)$	$\{C; -; z'\}$	0				
				$T_x d\sigma/dt$	$2 \operatorname{Re}(b_1 b_2^* - b_3 b_4^*)$	$\{-; x; x'\}$	TR				
				$T_z d\sigma/dt$	$2 \operatorname{Im}(b_1 b_2^* - b_3 b_4^*)$	$\{-; x; z'\}$					
				$L_x d\sigma/dt$	$2 \operatorname{Im}(b_1 b_2^* + b_3 b_4^*)$	$\{-; z; x'\}$					
				$L_x d\sigma/dt$	$2 \operatorname{Re}(b_1 b_2^* + b_3 b_4^*)$	$\{-; z; z'\}$					
				L C Dawleau	A Downookie I V Stownow New	1 Dham D05 247 (1075)					
				I. S. Barker,	A. Donnachie, J. K. Storrow, Nuc	n. Phys. B95 547 (1975)).				

JSA Jefferson Lab

E. Pasyuk

4 Complex amplitudes: 16 real polarization observables.

Complete measurement from 8 carefully chosen observables.

 πN has large cross section

but in KY recoil is self-analysing

	TIN							KY	
roccil	tord	N	Symbol	Transversity	Experiment	Type	N	tord	roppil
recon	larg	Y		representation	required	- 1	Υ	larg	recoll
			$\bigcirc d\sigma/dt$	$ b_1 ^2 + b_2 ^2 + b_3 ^2 + b_4 ^2$	$\{-; -; -\}$	S			
		\rightarrow	$ \sum d\sigma/dt $	$ b_1 ^2 + b_2 ^2 - b_3 ^2 - b_4 ^2$	$\{L(\frac{1}{2}\pi,0);-;-\}$	0			
			$Td\sigma/dt$	$ b_1 ^2 - b_2 ^2 - b_3 ^2 + b_4 ^2$	$\{-; y; -\}$				
	<u>^</u>		$Pd\sigma/dt$	$ b_1 ^2 - b_2 ^2 + b_3 ^2 - b_4 ^2$	$\{-; -; y\}$	0		^	
	Û	\Longrightarrow	$\bigcirc Gd\sigma/dt$	$2 \operatorname{Im}(b_1 b_3^* + b_2 b_4^*)$	$\{L(\pm \frac{1}{4}\pi); z; -\}$	BT \bigcirc		Û	
	\triangle	\bigcirc	$Hd\sigma/dt$	$-2 \operatorname{Re}(b_1 b_3^* - b_2 b_4^*)$	$\{L(\pm \frac{1}{4}\pi); x; -\}$			\wedge	
	u.	<u>/</u> v	$ \ge E d\sigma/dt $	$-2 \operatorname{Re}(b_1 b_3^* + b_2 b_4^*)$	$\{C; z; -\}$		∐ ₹	u.	
			$Fd\sigma/dt$	$2 \operatorname{Im}(b_1 b_3^* - b_2 b_4^*)$	$\{C; x; -\}$				
			$O_x d\sigma/dt$	$-2 \operatorname{Re}(b_1 b_4^* - b_2 b_3^*)$	$\{L(\pm \frac{1}{4}\pi); -; x'\}$	BR			
			$O_z d\sigma/dt$	$-2 \operatorname{Im}(b_1 b_4^* + b_2 b_3^*)$	$\{L(\pm \frac{1}{4}\pi); -; z'\}$	0			
			$C_x d\sigma/dt$	$2 \operatorname{Im}(b_1 b_4^* - b_2 b_3^*)$	$\{C; -; x'\}$	0			
			$C_z d\sigma/dt$	$-2 \operatorname{Re}(b_1 b_4^* + b_2 b_3^*)$	$\{C; -; z'\}$	0	\sim		
			$T_x d\sigma/dt$	$2 \operatorname{Re}(b_1 b_2^* - b_3 b_4^*)$	$\{-; x; x'\}$	TR			
			$T_z d\sigma/dt$	$2 \operatorname{Im}(b_1 b_2^* - b_3 b_4^*)$	$\{-; x; z'\}$	- 1		\wedge	
			$L_x d\sigma/dt$	$2 \operatorname{Im}(b_1 b_2^* + b_3 b_4^*)$	$\{-; z; x'\}$	0		X	
			$L_x d\sigma/dt$	$2 \operatorname{Re}(b_1 b_2^* + b_3 b_4^*)$	$\{-; z; z'\}$	9		u.	
			I. S. Barker.	A. Donnachie, J. K. Storrow, Nuc	l. Phys. B95 347 (1975).			

longitudinally polarized target

linearly polarized photons

4 Complex amplitudes: 16 real polarization observables.

Complete measurement from 8 carefully chosen observables.

 πN has large cross section

but in KY recoil is self-analysing

						10.0	
roccil tord v	Symbol	Transversity	Experiment	Type		tord	roppil
recoil targ y		representation	required		Υ	larg	recon
	$\bigcirc d\sigma/dt$	$ b_1 ^2 + b_2 ^2 + b_3 ^2 + b_4 ^2$	$\{-; -; -\}$	S			
	$ \sum d\sigma/dt $	$ b_1 ^2 + b_2 ^2 - b_3 ^2 - b_4 ^2$	$\{L(\frac{1}{2}\pi,0);-;-\}$				
	$\bigcirc T d\sigma/dt$	$ b_1 ^2 - b_2 ^2 - b_3 ^2 + b_4 ^2$	$\{-;y;-\}$				
\rightarrow	$\bigcirc Pd\sigma/dt$	$ b_1 ^2 - b_2 ^2 + b_3 ^2 - b_4 ^2$	$\{-;-;y\}$			^	
	$\bigcirc Gd\sigma/dt$	$2 \operatorname{Im}(b_1 b_3^* + b_2 b_4^*)$	$\{L(\pm \frac{1}{4}\pi); z; -\}$	BT		Û	
	$-Hd\sigma/dt$	$-2 \operatorname{Re}(b_1 b_3^* - b_2 b_4^*)$	$\{L(\pm \frac{1}{4}\pi); x; -\}$				
	$\sum E d\sigma/dt$	$-2 \operatorname{Re}(b_1 b_3^* + b_2 b_4^*)$	$\{C; z; -\}$				
	$-Fd\sigma/dt$	$2 \operatorname{Im}(b_1 b_3^* - b_2 b_4^*)$	$\{C; x; -\}$	4	<u>u</u> v		
	$O_x d\sigma/dt$	$-2 \operatorname{Re}(b_1 b_4^* - b_2 b_3^*)$	$\{L(\pm \frac{1}{4}\pi); -; x'\}$	BR			
	$O_z d\sigma/dt$	$-2 \operatorname{Im}(b_1 b_4^* + b_2 b_3^*)$	$\{L(\pm \frac{1}{4}\pi); -; z'\}$				
	$C_x d\sigma/dt$	$2 \mathrm{Im}(\mathrm{b}_1\mathrm{b}_4^* - \mathrm{b}_2\mathrm{b}_3^*)$	$\{C;-;x'\}$				
	$C_z d\sigma/dt$	$-2 \operatorname{Re}(b_1 b_4^* + b_2 b_3^*)$	$\{C; -; z'\}$				
	$T_x d\sigma/dt$	$2 \operatorname{Re}(b_1 b_2^* - b_3 b_4^*)$	$\{-; x; x'\}$	TR			
	$T_z d\sigma/dt$	$2 \text{ Im}(b_1 b_2^* - b_3 b_4^*)$	$\{-;x;z'\}$				
	$L_x d\sigma/dt$	$2 \operatorname{Im}(b_1 b_2^* + b_3 b_4^*)$	$\{-; z; x'\}$			Х	
	$L_x d\sigma/dt$	$2 \operatorname{Re}(b_1 b_2^* + b_3 b_4^*)$	$\{-; z; z'\}$	9		u.	
	I C Dark	A Downookie I V Stower N	1 Dhang DOS 247 (1075)				
	I. S. Barker,	A. Donnachie, J. K. Storrow, Nuc	сі. Pnys. B95 347 (1975)).			

linearly polarized photons

ns

longitudinally polarized target

transversely polarized target

E. Pasyuk

4 Complex amplitudes: **16** real polarization observables.

Complete measurement from 8 carefully chosen observables.

 πN has large cross section

but in KY recoil is self-analysing

ΠΝ						KY		
roppil tord y	Symbol	Transversity	Experiment	Type	N	tord	rocoil	
		representation	required		Y	laig	Tecon	
	$\supset d\sigma/dt$	$ b_1 ^2 + b_2 ^2 + b_3 ^2 + b_4 ^2$	$\{-; -; -\}$	$S \bigcirc$				
	$\Sigma d\sigma/dt$	$ b_1 ^2 + b_2 ^2 - b_3 ^2 - b_4 ^2$	$\{L(\frac{1}{2}\pi,0);-;-\}$					
\rightarrow	$ ightarrow T d\sigma/dt$	$ b_1 ^2 - b_2 ^2 - b_3 ^2 + b_4 ^2$	$\{-; y; -\}$		—			
\rightarrow \rightarrow \rightarrow	$\supset Pd\sigma/dt$	$ b_1 ^2 - b_2 ^2 + b_3 ^2 - b_4 ^2$	$\{-; -; y\}$			\wedge		
	$\bigcirc Gd\sigma/dt$	$2 \text{ Im}(b_1 b_3^* + b_2 b_4^*)$	$\{L(\pm \frac{1}{4}\pi); z; -\}$	BT		<u> </u>		
	$-Hd\sigma/dt$	$-2 \operatorname{Re}(b_1 b_3^* - b_2 b_4^*)$	$\{L(\pm \frac{1}{4}\pi); x; -\}$			$\overline{\mathbf{A}}$		
	$\leq Ed\sigma/dt$	$-2 \operatorname{Re}(b_1 b_3^* + b_2 b_4^*)$	$\{C; z; -\}$					
	$Fd\sigma/dt$	$2 \text{ Im}(b_1 b_3^* - b_2 b_4^*)$	$\{C; x; -\}$					
	$O_x d\sigma/dt$	$-2 \operatorname{Re}(b_1 b_4^* - b_2 b_3^*)$	$\{L(\pm \frac{1}{4}\pi); -; x'\}$	BR				
	$O_z d\sigma/dt$	$-2 \operatorname{Im}(b_1 b_4^* + b_2 b_3^*)$	$\{L(\pm \frac{1}{4}\pi); -; z'\}$					
	$C_x d\sigma/dt$	$2 \text{ Im}(b_1 b_4^* - b_2 b_3^*)$	$\{C; -; x'\}$					
	$C_z d\sigma/dt$	$-2 \operatorname{Re}(b_1 b_4^* + b_2 b_3^*)$	$\{C; -; z'\}$					
	$T_x d\sigma/dt$	$2 \operatorname{Re}(b_1 b_2^* - b_3 b_4^*)$	$\{-;x;x'\}$	TR				
	$T_z d\sigma/dt$	$2 \text{ Im}(b_1 b_2^* - b_3 b_4^*)$	$\{-;x;z'\}$					
	$L_x d\sigma/dt$	$2 \text{ Im}(b_1 b_2^* + b_3 b_4^*)$	$\{-;z;x'\}$			<mark>↓</mark>		
	$L_x d\sigma/dt$	$2 \operatorname{Re}(b_1 b_2^* + b_3 b_4^*)$	$\{-;z;z'\}$			u r		
	I. S. Barker,	A. Donnachie, J. K. Storrow, Nuc	el. Phys. B95 347 (1975)).				
 circ polarized linearly polari 	d photons rized photons	 ↑ Iongitudinal s ← transversely 	ly polarized target polarized target		Com over-	plete dete	e, and rmined	

E. Pasyuk

CEBAF Large Acceptance Spectrometer 1997-2012

Torus magnet 6 superconducting of

> Jefierson Lab CLAS Detector

Drift chambers 35,000 cells

Time-of-flight counters plastic contillators, 684 photomultipliers

art count

Gas Cherenkov counters e/π separation, 256 PMTs

JSA Jefferson Lab

E. Pasyuk

MESON 2012, May 31 - June 5, Kraków, Pota

Electromagnetic calorimeters Lead/scintillator, 1296 photomultipliers

Polarized pohoton beam

Circularly polarized beam produced by longitudinally polarized electrons

Linearly polarized photons: coherent bremsstrahlung on oriented diamond crystal

FROST

HDIce polarized target

HDIce Solid Deuterium-Hydride (HD) - a new class of polarized target

- Polarized at very high magnetic field and very low temperatuer
- Transferred to in beam cryostat
- Spin can be moved between H and D with RF transitions
- All material can be polarized with almost no background

E. Pasyuk

MESON 2012, May 31– June 5, Kraków, Poland

What we measure with CLAS

- « γр→π⁰p, π⁺n
- ₀ γр→ηр
- ₀ γp→ŋ'p
- « γρ→π⁺π⁻ρ ωρ, ρρ, φρ
- a γn→π⁻p

- ₀ γn→ωn

Polarization in Single pion photoproduction

I=3/2 multipoles

I=3/2 multipoles

JSA Jefferson Lab E. F

MESON 2012, May 31– June 5, Kraków, Poland

$\gamma p \rightarrow \pi^+ n$ Helicity asymmetry E

For W< 1.75 GeV all of the models represent the data fairly well. For W> 1.75 GeV none of the models represents the data well.

$\gamma p \rightarrow \pi^0 p$ Helicity asymmetry E

0.2

-0.4 -0.2

-0.4

-0.4 -0.2 0

-0.2

SAID

BnGa

SAID

MAID

BnGa

0.6 0.8

SAID

MAID

BnGa

SAID

BnGa

MAID

0.6 0.8

0.6

0.8

0.2

0.2

cos(0,

MAID

0.6

JSA Jefferson Lab

E. Pasyuk

MESON 2012, May 31- June 5, Kraków, Poland

-0.2

-0.4

$\gamma p \rightarrow \pi^+ n$ Helicity asymmetry G

$\gamma p \rightarrow \pi^+ n$ Target asymmetry T

E. Pasyuk

MESON 2012, May 31- June 5, Kraków, Poland

 $\gamma p \rightarrow \pi^+ n$ asymmetry F

JSA Jefferson Lab

E. Pasyuk

MESON 2012, May 31– June 5, Kraków, Poland

27

Status of meson photoproduction

	σ	Σ	т	Ρ	Е	F	G	н	T _x	Tz	L _x	Lz	O _x	O _z	C _x	C _z
							Proto	n targ	get							
pπ ⁰			1	1	1	1	1	1								
nπ+		1	1	1	1	-	1	1								
ρη	 Image: A start of the start of		1	1	1	1	1	1								
ρη'	v	1	1	1	1	1	1	1								
ρω	 Image: A start of the start of		1		1	1	1	1								
K⁺Λ		1	1		1	1	1	1	1	1	1	1	1	1	1	1
K+Σ0		1	1		1	1	1	1	1	1	1	1	1	1	1	1
K ^{0*} Σ+	 Image: A second s	1	1	1	1	-	1	1								
						4	'Neutro	on" ta	rget							
рπ		1	1		1	1	1	1								
pp ⁻	1	1	1		1	1	1	1								
K+Σ-	1	1	1		1	1	1	1								
K₀V	1	1	1	1	1	1	1	1	1	1	1	- I	1	1	1	1
K ⁰ Σ ⁰	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
K ^{0*} Σ ⁰	1	1														

- published

E. Pasyuk

Summary

- "compete measurement" in pseudoscalar meson photoproduction is reality
- Data collection with proton and deuteron targets is complete
- Data are being analyzed

