Meson Production in Antinucleon Annihilation on Nuclei

S. Lourenço, H. Lenske, S. Wycech

Institut für Theoretische Physik Justus-Liebig-Universität Giessen

04.06.2012

Deutsche Forschungsgemeinschaft

DFG

<ロト < 団ト < 団ト < 団ト

S. Lourenço, H. Lenske, S. Wycech

upcoming experiments at the Facility of Antiproton Ion Research

- Anti-Proton ANnihilation at DArmstadt
- Antiproton-Ion-Collider

what has been studied:

- low energy antiproton-nucleus scattering (Bachelor thesis: Thorsten Steinert)
- energy spectra of antiprotonic atoms (Bachelor thesis: Jan Haas)
- meson multipicities

$\overline{N} + A \to \pi_1 + \pi_2 + B$

$$d^{9}\sigma_{\alpha\beta} = N_{\alpha\beta} \left(\frac{\hbar c}{2\pi}\right)^{9} \frac{d^{3}k_{1}}{E_{1}} \frac{d^{3}k_{2}}{E_{2}} \frac{d^{3}k_{B}}{E_{B}} \left| M_{\alpha\beta} \left(\vec{k_{1}}, \vec{k_{2}}, \vec{k_{B}}; \vec{k_{\alpha}}\right) \right|^{2} \\ \delta \left(\vec{k_{1}} + \vec{k_{2}} + \vec{k_{B}}\right) \delta \left(E_{1} + E_{2} + E_{B} - \sqrt{s}\right)$$

$$M_{\alpha\beta} \approx t_{\overline{N}N \to 2\pi}(s) \langle \chi_{1\beta}^{(-)} \chi_{2\beta}^{(-)} | \varphi_B | \chi_{\overline{N}A}^{(+)} \rangle$$
(1)

$$\varphi_{B} = \langle B | \psi_{N} | A \rangle = \sum_{i} \varphi_{i} \langle B | a_{i} | A \rangle$$
(2)

メロト メロト メヨト メヨト

S. Lourenco et al., Hyperfine Interactions (2012) in print

•

S. Lourenço, H. Lenske, S. Wycech

PDG Cross Section

$$U_{opt}(\mathbf{r}) = V - iW = \sum_{N=p,n} \int rac{d^3q}{(2\pi)^3}
ho_N(q) t_{ar{p}N}(T_{Lab},q^2) e^{i\mathbf{q}\cdot\mathbf{r}}$$

S. Lourenço, H. Lenske, S. Wycech

JLU Giessen

elastic part:

G-parity-transformation of the *NN* (Paris [1], Bonn [2]) interaction (charge conjugation plus 180° rotation around the y axis in isospin space):

odd G-Parity vertices

$$V_{NN}(\pi,\omega,\delta) = -V_{\bar{N}N}(\pi,\omega,\delta)$$

even G-parity vertices

$$V_{NN}(\sigma,\rho,\eta) = V_{\bar{N}N}(\sigma,\rho,\eta)$$

JLU Giessen

S. Lourenço, H. Lenske, S. Wycech

2-Meson Diagrams Included in Bonn Model (elastic)

S. Lourenço, H. Lenske, S. Wycech

Diagrams Included in Bonn Model (annihilation)

$$V^{N\overline{N} \rightarrow M_{i} M_{j}} = \underbrace{\bigwedge_{i}^{M_{i}} M_{j}}_{N \overline{N}} + \underbrace{\bigwedge_{i}^{\pi,\rho} \pi,\rho}_{N \overline{N}} + \underbrace{\bigwedge_{i}^{\pi,\rho}}_{N \overline{N}} + \underbrace{\bigwedge_$$

S. Lourenço, H. Lenske, S. Wycech

Meson Production in Antinucleon Annihilation on Nuclei

JLU Giessen

<ロト </p>

Summary/ Outlook

Diagrams Included in Bonn Model (dispersive)

S. Lourenço, H. Lenske, S. Wycech

Meson Production in Antinucleon Annihilation on Nuclei

JLU Giessen

・ロト ・ 日 ト ・ 日 ト ・

2-Meson Production on a Nucleus

- 2-Meson Production Recipe
 - $\bar{N}A$ interaction
 - Production Vertex
 - Bm₁m₂ interaction

$$\bar{N} + A
ightarrow m_1 + m_2 + B$$
 (3)

Image: A matrix of the second seco

JLU Giessen

S. Lourenço, H. Lenske, S. Wycech

Image: Image:

JLU Giessen

Final State Interaction

FIG. 1. Direct (a,c) and exchange (b,d) nucleon (N) and delta-isobar (Δ) pole diagrams together with σ , ρ -exchange processes (e,f) used in πN interaction models.

S. Lourenço, H. Lenske, S. Wycech

Final State Interaction

Pion-nucleus potential of Kisslinger type:

$$\left[-\Delta - k^2 + U_s + \overrightarrow{\partial} \ U_p \ \overrightarrow{\partial} \ \right] \Phi = 0 \tag{4}$$

• • • • • • • • • • • •

After Krell-Ericson transformation $\Phi = (1 - U_p)^{-1/2}\psi$ the local potential is transformed into (Johnson and Satchler):

$$U_{N}(r) = \frac{(\hbar c)^{2}}{2\omega} \left\{ \frac{U_{s}}{1 - U_{p}} - \frac{k^{2}U_{p}}{1 - U_{p}} - \left[\frac{\frac{1}{2}\vec{\nabla}^{2}U_{p}}{1 - U_{p}} + \left(\frac{\frac{1}{2}\vec{\nabla}U_{p}}{1 - U_{p}}\right)^{2} \right] \right\}$$
(5)

Pion-Nucleus interactions beyond the Δ -resonance require higher resonances.

S. Lourenço, H. Lenske, S. Wycech

(9)

・ロト ・ 日 ・ ・ 田 ト ・

relation between the optical potential and the scattering amplitude:

$$U(r) = 4\pi f_{\pi N}\rho(r)$$
(6)

$$U(r) = \underbrace{4\pi f_{S} \rho(r)}_{U_{S}} + \underbrace{4\pi 2f^{P} \overrightarrow{\partial} \rho(r) \overrightarrow{\partial}}_{\overrightarrow{\partial} U_{P} \overrightarrow{\partial}}$$
(7)

$$f^{P}(k, k') = \frac{\gamma v(k)v(k')}{(E_{r} - E - i\gamma k^{3} [v(k)]^{2})}$$
(8)

where the form-factor is

$$v(k) = [1 + rac{k^2}{\kappa^2}]^{-2},$$

S. Lourenço, H. Lenske, S. Wycech

Meson Production in Antinucleon Annihilation on Nuclei

Image: A matrix

σ [mb]

S. Lourenço, H. Lenske, S. Wycech

Meson Production in Antinucleon Annihilation on Nuclei

Table: Higher I = 1/2 resonance parameters, PDF data.

Name (E_r)	Γ [MeV]	R	I J ^P	rank
N(1440)	300	0.6	$1/2 \ 1/2^+$	* * **
N(1535)	150	0.35	$1/2 \ 1/2^{-}$	
N(1650)	165	0.60	$1/2 \ 1/2^{-}$	
N(1675)	150	0.60	$1/2 5/2^-$	* * **
N(1680)	130	0.68	$1/2 5/2^+$	* * **
N(1700)	100	0.15	$1/2 \ 3/2^{-}$	* * *

Meson Production in Antinucleon Annihilation on Nuclei

JLU Giessen

・ロト ・聞 ト ・ ヨト ・ ヨト

Table: Higher I = 3/2 resonance parameters, PDF data.

Name (E_r)	Γ [MeV]	R	I J ^P	rank
$\Delta(1600)$	350	0.10 - 0.25	3/2 3/2+	* * *
$\Delta(1620)$	145	0.20 - 0.30	$3/2 1/2^-$	* * **
$\Delta(1700)$	300	0.10 - 0.20	3/2 3/2-	* * **
$\Delta(1750)$	300	0.10 - 0.20	3/2 1/2+	*
$\Delta(1900)$	200	0.10 - 0.30	3/2 1/2-	**
$\Delta(1905)$	330	0.09 - 0.15	$3/2 5/2^+$	* * **
$\Delta(1910)$	250	0.15 - 0.30	$3/2 1/2^+$	* * **
$\Delta(1920)$	200	0.05 - 0.20	3/2 3/2+	* * *
$\Delta(1930)$	270	0.05 - 0.15	3/2 5/2-	* * *
$\Delta(1940)$	~ 200	0.05 - 0.15	3/2 3/2-	*
$\Delta(1950)$	285	0.35 - 0.45	3/2 7/2+	* * **
$\Delta(2000)$	~ 200	0.00 - 0.07	3/2 5/2+	**

Meson Production in Antinucleon Annihilation on Nuclei

JLU Giessen

・ロト ・聞 ト ・ ヨト ・ ヨト

$$M_{\alpha\beta} \approx t_{\overline{N}N \to 2\pi}(s) \langle \chi_{1\beta}^{(-)} \chi_{2\beta}^{(-)} | \varphi_B | \chi_{\overline{N}A}^{(+)} \rangle$$
(10)

Meson Production in Antinucleon Annihilation on Nuclei

Image: A match a ma

Summary/ Outlook

JLU Giessen

New Feature of Nuclear Annihilation: Single Meson Production

S. Lourenço, H. Lenske, S. Wycech

Summary

- the *p̄A* amplitudes are derived in *tρ*-approximation by folding the *p̄N* amplitudes with the *HFB*-nucleus densities
- the $\bar{p}N$ amplitudes are obtained from a (semi-)microscopic model
- hadron production by antiproton annihilation on nuclei
- in progress: meson production as probe for nuclear spectroscopy

In collaboration with J. Haidenbauer (FZ-Juelich).

< ロ > < 同 > < 回 > < 回 > < 回