Lagrangiar

Form factors

Summary 00000000

To vmd or not to vmd¹ Vector-meson dominance (vmd) revisited

Stefan Leupold

(collaborators: Carla Terschlüsen, Bruno Strandberg, Matthias Lutz)

UPPSALA UNIVERSITET

MESON 2012, Cracow, Poland, June 2012

¹ title robbed from Rob Pisarski

Lagrangiar

Form factors

Summary

Table of Contents

Lagrangian for pseudoscalars and vectors — fixing parameters

Reactions of hadrons with (virtual) photons

Why is it interesting?

- intrinsic structure of proton (parton-distribution functions, electromagnetic form factors, GPDs, ...)
- in-medium changes of properties of hadrons (observable in dilepton spectrum)
- *g* − 2 of muon:
 - \hookrightarrow background for beyond-standard-model physics

Reactions of hadrons with (virtual) photons

Why is it interesting?

- intrinsic structure of proton (parton-distribution functions, electromagnetic form factors, GPDs, ...)
- in-medium changes of properties of hadrons (observable in dilepton spectrum)
- *g* 2 of muon:
 - \hookrightarrow background for beyond-standard-model physics

What do we know?

- photons couple directly to vector mesons
- → vector mesons prominently seen in corresponding cross sections
- \hookrightarrow "vector-meson dominance" (VMD)

Lagrangia 000 Form factors

Summary 00000000

Vector-meson dominance (VMD)

VMD works very well for pion form factor (FF) (Sakurai, ...) $e^+e^- \rightarrow \pi^+\pi^-$: 50.0 present --- VMD Barkov 85 40.0 $F_{\pi}|^2$ a = 6.05 g. = 4.93 30.0 20.0 4 0.73 0.78 √q² [GeV]

> e.g., Klingl/Kaiser/Weise, Z. Phys. A356, 193 (1996)

Lagrangia 000 Form factors

Summary

Vector-meson dominance (VMD)

VMD works very well for pion form factor (FF) (Sakurai, ...) $e^+e^- \rightarrow \pi^+\pi^-$: 50.0 present -- VMD Barkov 85 40.0 $F_{\pi}|^2$ a = 6.05 g. = 4.93 30.0 20.0 0.73 0.78 √q² [GeV] e.g., Klingl/Kaiser/Weise, Z. Phys. A356, 193 (1996)

VMD dramatically fails for omega transition FF $\omega \rightarrow \mu^+ \mu^- \pi^0$:

Motivation 00● Lagrangiar

Form factors

Summary 00000000

Vector meson dominance (VMD)

• VMD works very well for eta transition FF $\eta \rightarrow \mu^+ \mu^- \gamma$:

• VMD works very well for pion transition FF (e.g. $e^-\gamma \rightarrow e^-\pi^0$):

$$\Lambda^{-2} := \left. rac{dF(s)}{ds}
ight|_{s=0}$$

- $\Lambda_{
 m PDG} = (0.76 \pm 0.05)\,{
 m GeV}, \ \Lambda_{
 m VMD} = m_V pprox 0.77\,{
 m GeV}$
- does it work for doublevirtual transition FF? $\pi^0/\eta \rightarrow e^+e^-e^+e^-$
- important for hadronic light-by-light scattering

Lagrangian for pseudoscalars and vectors

- want to construct simple Lagrangian for π, ρ, ω (only two flavors for simplicity)
- use lowest-order Lagrangians from chiral perturbation theory for sector with
 - even number of pions: non-linear sigma model
 - → two parameters: pion decay constant and pion mass
 - odd number of pions: Wess-Zumino-Witten term
 - → parameter free
- use in addition Lagrangian for vector mesons ~ next slides

Mo	tiva	tic	

Lagrangian 0●0 Form factors

Summary 000000000

Inclusion of vector mesons

relevant Lagrangian with one vector meson

$$-\frac{\mathrm{i}}{4} \, h_{\mathsf{P}} \, m_{V} \, \mathrm{tr}(\, \textit{V}_{\mu\nu} \, [\, U^{\mu}, \, U^{\nu}]\,) - \frac{1}{8} \, \textit{e}_{V} \, m_{V} \, \mathrm{tr}(\, \textit{V}^{\mu\nu} \, Q) \, \textit{F}_{\mu\nu}$$

- use anti-symmetric tensor fields, $V_{\mu\nu}$, to represent vector mesons
- Lagrangian saturates low-energy constants of next-to-leading-order chiral perturbation theory (Gasser, Leutwyler, Annals Phys. 158 (1984) 142)
- two parameters: h_P and e_V
- \hookrightarrow fix h_P from decay $ho \to 2\pi$
- \hookrightarrow fix ${m e_V}$ from decay $ho o {m e^+ e^-}$

Lutz/S.L., Nucl. Phys. A813, 96 (2008)

La china ta ca	- f		
Motivation	Lagrangian ○○●	Form factors	Summary 000000000

inclusion of vector mesons

relevant Lagrangian with two vector mesons

$$-\frac{1}{4}\operatorname{tr}(D_{\mu}V^{\mu\alpha}D^{\nu}V_{\nu\alpha}) + \frac{1}{8}m_{V}^{2}\operatorname{tr}(V_{\mu\nu}V^{\mu\nu}) \\ + \frac{i}{8}h_{A}\epsilon_{\mu\nu\alpha\beta}\operatorname{tr}(\{V^{\mu\nu}, D_{\lambda}V^{\lambda\alpha}\}U^{\beta})$$

• one free parameter: *h*_A

(corresponds to g_A in pion-nucleon interaction)

$$\hookrightarrow$$
 fix $h_A * e_V$ from decay $\omega \to \pi^0 + \gamma$

Lutz/S.L., Nucl. Phys. A813, 96 (2008)

M	oti	va	ti	n
	ЭC			

Lagrangian

Form factors

Summary 00000000

Electromagnetic form factors

three free parameters fixed from two-body decays

• $\rho \rightarrow 2\pi$ • $\rho \rightarrow l^+ l^-$ (l = lepton) • $\omega \rightarrow \pi^0 \gamma$

no further parameters needed to determine

- pion form factor, $e^+e^-
 ightarrow \pi^+\pi^-$
- omega transition form factor $\omega \to \pi^0 I^+ I^-$
- pion transition form factor
 - single virtual: $\pi^0 \rightarrow \gamma e^+ e^-$
 - double virtual: $\pi^0 \rightarrow e^+e^- e^+e^-$
- cross section $e^+e^- \rightarrow \pi^+\pi^-\pi^0$

- (VMD) (no VMD)
 - (VMD) (VMD**?**)

Motivation	Lagrangian 000	Form factors	Summary
Dion form	factor		

- tree level: $S \rightarrow 1$ (drop S in figure)
- rescattering: S = 1 + 2iT

Lagrangiar

Form factors

Pion form factor at tree level

- two contributions: direct (~ pion charge) and via ρ meson
- form factor: normalize amplitude to direct term

$${m {F}_{\pi}(s)} = 1 + rac{e_V \, h_P \, m_V^2}{16 e \, f^2} \, rac{s}{m_V^2 - s}$$

as compared to VMD

$$F_{\pi}^{
m VMD}(s)=rac{m_V^2}{m_V^2-s}$$

- formulae would agree for $e_V h_P = 16e f^2/m_V^2 \approx 0.065$
- here: $e_V pprox 0.22, \, h_P pprox 0.30 \rightsquigarrow e_V \, h_P pprox$

Motivation

Lagrangiar

Form factors

Pion form factor at tree level

- two contributions: direct (~ pion charge) and via ρ meson
- form factor: normalize amplitude to direct term

$${m {F}_{\pi}(s)} = 1 + rac{e_V \, h_P \, m_V^2}{16 e \, f^2} \, rac{s}{m_V^2 - s}$$

as compared to VMD

$$F_{\pi}^{
m VMD}(s)=rac{m_V^2}{m_V^2-s}$$

- formulae would agree for $e_V h_P = 16 e f^2 / m_V^2 \approx 0.065$
- here: $e_V \approx 0.22$, $h_P \approx 0.30 \rightsquigarrow e_V h_P \approx 0.066$
- \hookrightarrow very close to VMD

Motivation

Motivation 000	Lagrangian 000	Form factors	Summary
Pion form	factor		

• tree level: $S \rightarrow 1$ (drop S in figure)

• rescattering: S = 1 + 2iT

Lagrangiar

Form factors

Summary 00000000

Pion form factor with rescattering

- excellent description
- note: isospin breaking (ρ-ω mixing) not included
 S.L., Phys. Rev. D80, 114012 (2009)

 definition: form factor parametrizes deviation from structureless decay; normalized to photon point (*M* = 0)

 experiments show strong deviation from simple vector-meson dominance

$$F(M^2)=\frac{m_\rho^2}{m_\rho^2-M^2}$$

Phys. Lett. B 677, 260 (2009)

Mo	tiva	tic	

Transition form factor of omega meson — theory

• our approach: decay amplitude $\omega \rightarrow \pi^0 + \gamma^{(*)}$ $\sim h_A e_V$ for both real and virtual γ

 \hookrightarrow $h_A e_V$ drops out in form factor

$$F_{\omega\pi}(s) = rac{m_V^2 + s}{m_V^2 - s} \qquad \leftrightarrow \qquad F_{\omega\pi}^{
m VMD}(s) = rac{m_V^2}{m_V^2 - s}$$

 \hookrightarrow no free parameters and significant deviation from VMD

 note: tree level sufficient for ω → π⁰ + dilepton (would not be sufficient for e⁺e⁻ → ω + π⁰)

Transition form factor of omega meson — results

- C. Terschlüsen, S.L., Phys. Lett. B691, 191 (2010)
 - satisfactory description, much better than VMD
 - NA60: dimuons, planned: WASA with dielectrons

D'	When from from the		
ooo			5ummary 000000000
		E a sura da ata sur	

- Pion transition form factor
 - in general: form factor parametrizes deviation from structureless decay; normalized to photon point (π⁰ → 2γ)

- experiments: agreement with VMD (slope $\approx m_V$)
- our approach: two contributions (leptons not displayed any more)

Mo	tiva	tic	

Pion transition form factor — results

- two contributions:
 - direct: Wess-Zumino-Witten term ~ 1/f
 - via vector mesons: π-ρ-ω vertex ~ h_A
- form factor: normalized to direct term

$$F_{\pi\gamma}(s) = 1 + rac{\pi^2 h_A e_V^2}{12 e^2} rac{s}{m_V^2 - s}$$

as compared to VMD

$$\mathcal{F}^{ ext{VMD}}_{\pi\gamma}(m{s}) = rac{m_V^2}{m_V^2-m{s}}$$

- formulae would agree for $h_A e_V^2 = 12e^2/\pi^2 \approx 0.11$
- here: $e_V \approx$ 0.22, $h_A \approx$ 2.1 \rightsquigarrow $h_A e_V^2 \approx$

Mo	tiv	ati	on

Pion transition form factor — results

- two contributions:
 - direct: Wess-Zumino-Witten term ~ 1/f
 - via vector mesons: π-ρ-ω vertex ~ h_A
- form factor: normalized to direct term

$$F_{\pi\gamma}(s) = 1 + rac{\pi^2 h_A e_V^2}{12 e^2} rac{s}{m_V^2 - s}$$

as compared to VMD

$$\mathcal{F}^{ ext{VMD}}_{\pi\gamma}(m{s}) = rac{m_V^2}{m_V^2-m{s}}$$

- formulae would agree for $h_A e_V^2 = 12e^2/\pi^2 \approx 0.11$
- here: $e_V \approx 0.22, \, h_A \approx 2.1 \rightsquigarrow h_A \, e_V^2 \approx 0.10$
- \hookrightarrow again close to VMD

Lagrangia 000 Form factors

Summary 00000000

Double-virtual transition form factor

- single-virtual $\pi^0 \to \gamma \gamma^*$ agrees with VMD
- double-virtual $\pi^0 \to \gamma^* \gamma^*$ might not
- in our approach:

$$F(s_{1}, s_{2}) = 1 + \frac{\pi^{2} h_{A} e_{V}^{2}}{12e^{2}} \frac{m_{V}^{2} (s_{1} + s_{2})}{(m_{V}^{2} - s_{1}) (m_{V}^{2} - s_{2})}$$

$$\approx 1 + \frac{m_{V}^{2} (s_{1} + s_{2})}{(m_{V}^{2} - s_{1}) (m_{V}^{2} - s_{2})}$$

$$= 1 - \frac{m_{V}^{2}}{m_{V}^{2} - s_{1}} - \frac{m_{V}^{2}}{m_{V}^{2} - s_{2}} + 2 - \frac{m_{V}^{4}}{(m_{V}^{2} - s_{1}) (m_{V}^{2} - s_{2})}$$
"half" VMD

 $\, \hookrightarrow \, \text{ different from VMD for } s_1, s_2 \neq 0$

vector-meson contribution $e^+e^- \rightarrow \omega^* \rightarrow \rho^*\pi \rightarrow 3\pi$ (black) plus Wess-Zumino-Witten term (sum in red)

Motivation	Lagrangian	Form factors	Summary
000	000		●oooooooo
Summary			

- have utilized respective lowest order Lagrangians of
 - χ PT in normal sector (non-linear sigma model)
 - χPT in anomalous sector (Wess-Zumino-Witten term)
 - vector mesons represented by antisymmetric tensor fields
- pion form factor and pion transition form factor:
 - direct term and term with vector mesons
 - parameters allow cancellations such that VMD emerges
- omega transition form factor:
 - only one term ~> no cancellation
 - no VMD
 - but also parameter-free description $(m_V^2 + s)/(m_V^2 s)$
- all results in good agreement with experiments
- prediction: double-virtual transition form factor of pion deviates from VMD

Motivation	Lagrangian 000	Form factors	Summary oooooooo

Summary II

three coupling constants of vector-meson Lagrangian sufficient to describe

- $\rho \to \pi^+ \pi^-$, $\rho/\omega \to I^+ I^-$ (I =lepton)
- $ho/\omega
 ightarrow \pi\gamma$ Lutz/S.L., Nucl. Phys. A813, 96 (2008)
- $e^+e^- \rightarrow \pi^+\pi^-$, pion form factor
- π⁺π⁻ → π⁺π⁻ in *p*-wave (not shown here)
 S.L., Phys. Rev. D80, 114012 (2009)
- ω → π⁰l⁺l⁻, transition form factor of omega to pion Terschlüsen/S.L., Phys. Lett. B691, 191 (2010)
- π⁰ → γe⁺e⁻, transition form factor of pion to photon
 C. Terschlüsen, Diploma thesis, Giessen (2010)
- ω → π⁺π⁻π⁰ (not shown here)
 S.L./Lutz, E. P. J. A 39, 205 (2009)

•
$$e^+e^- \rightarrow \pi^+\pi^-\pi^0$$

B. Strandberg, Master thesis, Uppsala (2012)

Mo	tiva	atio	
00			

Outlook

- microscopic understanding of cancellations
- extension to three flavors
- → inclusion of terms which break flavor and/or nonet symmetry
- \hookrightarrow especially inclusion of η' is interesting and challenging
- → stay tuned for talk by Carla Terschlüsen on Monday, session A4
 - (C. Terschlüsen, SL, M.F.M. Lutz, arXiv:1204.4125 [hep-ph])
 - useful as starting point for an effective field theory?
- $\hookrightarrow\,$ calculations beyond leading order $\rightsquigarrow\,$ loops

backup slides

Lagrangia 000 Form factors

Summary 000000000

Transition form factor of eta meson

PRELIMINARY

our approach extended to three flavors: leading-order term from vector-meson Lagrangian plus leading-order term from pure χ PT (Wess-Zumino-Witten)

PRELIMINARY

Lagrangia 000 Form factors

Summary 000000000

Reactions of hadrons with (virtual) photons

Why is it interesting?

Lagrangia 000 Form factors

Summary 000000000

Reactions of hadrons with (virtual) photons

Why is it interesting?

intrinsic structure of proton

Lagrangia 000 Form factors

Summary 000000000

Intrinsic structure of proton

FIG. 4. Elastic scattering cross sections for electrons from a "point" proton and for the actual proton. The differences are attributable to the finite size of the proton.

H.W. Kendall, Rev. Mod. Phys. 63, 597 (1991) (Nobel prize lecture 1990)

Summary 0000000

Reactions of hadrons with (virtual) photons

Why is it interesting?

 intrinsic structure of proton (parton distribution functions, electromagnetic form factors, GPDs, ...)

Summary 0000000

Reactions of hadrons with (virtual) photons

Why is it interesting?

- intrinsic structure of proton (parton distribution functions, electromagnetic form factors, GPDs, ...)
- in-medium changes of properties of hadrons

Lagrangiar

Form factors

Summary 000000000

In-medium changes of properties of hadrons

dilepton spectrum from a nucleus-nucleus collision

models:

- dropping mass
- broad spectral function

data: NA60

S. Damjanovic et al. (NA60), Nucl. Phys. A 774, 715 (2006)

Summary 000000000

Reactions of hadrons with (virtual) photons

Why is it interesting?

- intrinsic structure of proton (parton distribution functions, electromagnetic form factors, GPDs, ...)
- in-medium changes of properties of hadrons

Summary

Reactions of hadrons with (virtual) photons

Why is it interesting?

- intrinsic structure of proton (parton distribution functions, electromagnetic form factors, GPDs, ...)
- in-medium changes of properties of hadrons
- *g* 2 of muon:
 - \hookrightarrow background for beyond-standard-model physics

Lagrangiar

Form factors

Summary

Muon's *g* – 2

Jegerlehner/Nyffeler, Phys. Rept. 477, 1 (2009)

Motivation 000	Lagrangian 000	Form factors	Summary
Muon's $q-2$			

Ч

Largest uncertainty of standard model: hadronic contributions

Lagrangiar

Form factors

Summary

Decay of omega to three pions

decays of ω meson

- same vertex appears in both processes $\omega \rightarrow \gamma \pi$ and $\omega \rightarrow 3\pi$ in leading order
- use first process to fix coupling of second one

→ prediction:
$$\Gamma_{\omega \to 3\pi} = 7.3 \text{ MeV}$$

 $\Gamma_{\omega \to 3\pi}^{exp} = (7.57 \pm 0.13) \text{ MeV}$
S.L./Lutz, E. P. J. A 39, 205 (2009)

presently also investigated by WASAatCOSY and Kubis et al.

Motivation 000	Lagrangian 000	Form factors	Summary
Pion form facto	r		
from e^+e^-	and	fron	ו $ au$ decay
50 45 40 35 30 5 25 20 5 0 30 40 5 30 40 5 30 40 5 30 40 5 30 5 40 5 4		2 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0	ран — — — — — — — — — — — — — — — — — — —

 $e_V = 0.230, \, h_P = 0.300 \text{-} 0.308$

√s [GeV]

Summary 000000000

Representations for vector mesons

- need three active degrees of freedom for spin-1 state
- vector representation: use four-component field, V_{μ} , together with one constraint $\partial^{\mu}V_{\mu} = 0$
- anti-symmetric tensor representation: use six-component field, $V_{\mu\nu}$, together with constraints $\epsilon^{\mu\nu\alpha\beta} \partial_{\nu} V_{\alpha\beta} = 0$
- connection: $V_{\mu} \sim rac{1}{m_V} \partial^{
 u} V_{\mu
 u}$
- note: rewriting Lagrangian with tensor fields into Lagrangian with vector fields one finds vector-meson exchange and point interactions — but with fixed relative weight; example:

$$F_{\omega\pi}(s) = rac{m_V^2 + s}{m_V^2 - s} = rac{2 \, m_V^2}{m_V^2 - s} - 1$$

Motivation 000	Lagrangian 000	Form factors	Summary
Cancellations			

- pion form factor
- \hookrightarrow VMD for $e_V h_P = 16 e f^2 / m_V^2 \approx 0.065$
 - pion transition form factor
- \hookrightarrow VMD for $h_A \, e_V^2 = 12 e^2/\pi^2 pprox 0.11$
 - our parameters
- $\hookrightarrow e_V \approx 0.22, h_P \approx 0.30, h_A \approx 2.1$
 - KSFR relations
- $\hookrightarrow e_V = 4\sqrt{2} e f/m_V \approx 0.199, h_P = 2\sqrt{2} f/m_V \approx 0.328,$ no statement about $h_A!$
- \hookrightarrow if one turns logic around and demands VMD:

$$\rightsquigarrow h_A = 3 m_V^2 / (8 \pi^2 f^2) \approx 2.82$$