Recent results with upgraded VES setup: $\pi^{-} 3\pi^{0}$ and other systems

Yu. Khokhlov IHEP Protvino for VES Group

12th International Workshop on Meson Production, Properties and Interaction KRAKÓW, POLAND 31 May - 5 June 2012

Outline

- VES
- Introductory remarks
- Setup upgrade
- New data: First look
- Summary

Experiment VES

- "Old player" in the field of light meson spectroscopy Some selected topics:
- \rightarrow π (1800) studies
- \rightarrow J^{PC} = 1⁻⁺ exotics
- → particular decays: DP in η' → $\eta\pi$ + π -

ISB in $f_1(1285) \rightarrow \pi^+ \pi^- \pi^0$ (EPJ A47 (2011) 68)

- Major approach: (quasy)exclusive forward production of meson systems in MA –collisions at moderate (25-40 GeV) energies
- Major tool: general purpose spectrometer VES
 need for improvements
- In parallel with analyses of previously collected data (lengthy) VES Setup renovation undertaken

VES Setup

Operates with

- secondary beam of U-70 PS: $\sigma(\theta_x) \approx \sigma(\theta_y) \approx 0.7 \text{ mrad}, \ \sigma(X) \sim \sigma(Y) \sim 1 \text{ cm}$
- (typical) momentum $p \sim 28$ GeV/c; spread (depending on setting) ~3%
- Composition: ~98% π⁻, ~1.7% K⁻
 PID with beam Cherenkov counters

2D - distribution of amplitudes from two Beam Cherenkov Counters

VES Setup (cont'd)

- Nuclear target (Be) ~0.1 λ
- Magnetic spectrometer $p_{kick} = 0.56 \text{ GeV/c}$
- Tracking system: (26 planes of) PCs and DCs
- ~ 0.150 x 0.200 mrad (V x H) acceptance
- EM calorimetry
- PID for Secondaries: Multicell Cherenkov Counter (MCC) (28 cells)
- Fast DAQ (4*10⁴ / 9 s-cycle)
- Minimum bias trigger

1 - target; 2 - veto counters; 3 - multiplicity discriminator (MD); 4 -magnet ; 5 - Čh counter; 6 -Sci -hodoscope; 7 -EMC

VES Setup: Upgrade

- New DAQ: fast (<Dead time> ~ 22 µs/event); reliable (<1% fault rate); flexible
- New triggering scheme: no "charged multiplicity" demand (MD & SciHod out)
- Fully upgraded EMC: finer granularity; radiation hardness; faster ADCs
- New Large Area Trackers: Drift Tubes (to be finished in October-2012)
- New FE electronics for tracking detectors
- Improved performance of Multicell Cherenkov Counter
- Detector Control System
- Beam momentum spectrometer: 1% resolution
- New/improved software (on-line & off-line)

EMC

Lead Glass 43x43 (86x86) mm² \rightarrow "shashlyk" PbSci + WLS-Fi 38x38 (76x76) mm²

Design by V.Polyakov et al. (IHEP) similar to COMPASS's Ecal

224 layers

Pb: Sci = 0.55 мм : 1.5 мм

 $X_0 \approx 19 \text{ MM} \rightarrow L = 24 X_0$

RM \approx 38 mm

Pre-assembled modules

EMC

Cassette during assembly Irregular octagon (acceptance against Nb of channels)

1583 (= 1215 small + 368 big) counters

ADC module

EMC resolution

EMC: $M(\gamma\gamma)$ in $\pi^-\gamma\gamma$ events

 Δ M(FWHM) \approx 18.5 MeV/c²

DT – chambers

- 6 planes (* 3-layer) of 3 types (X, Y, U/V coord.) planned
- Mylar tubes, D=30 mm Design by R. Fakhrutdinov et al. (IHEP) similar to ATLAS MDTs

DT – chambers (cont'd)

Distribution of sum of drift distances in adjacent layers with σ ~ 300 μm

Drawing of DT - chamber

View of DT - chamber

On-detector TDC

- Custom –design: 32- and 48- channel TDCs
- Full functionality
- FPGA based digitizer
- μ-controller (+LINUX) based configuring/readout
- E-net \rightarrow PC
- Time resolution (LSB) 2.5 ns
- Time window 500 ns
- Time for registering (Dead Time) 1.5 μs @ full occupancy
- Buffer memory 32 MB

Multicell Cherenkov Counter

GEANT model of MCC

Multicell Cherenkov Counter: momentum range for π/K ID

New data taking

- 1-month Run (Nov-Dec 2011)
- Fast DAQ
- \rightarrow (Almost unselective) trigger on "beam fragmentation"
- → Collect 1– prong events inaccessible @VES before
- Good EM-calorimetry
- Unfinished LAT: 1 plane out of 6, not yet in Recon
- \rightarrow weakened resolution and track finding for multiprong events

New data: First look

- ~2*10¹¹ beam particles on target
- **Typical selection for**
- various (quasi)exclusive 1-prong systems:

Topology: 1 fast negatively charged particle,

N γ's (N=2, 4, 6,...)

- Vertex within target
- γ pairing into neutral mesons (π^0 , η) (w. control bands for bckg.)
- Sum of momenta (charged+neutrals) close to beam momentum

Statistics estimate

~30% accuracy; **55% of data** treated out of recorded **Nmb. of events**:

- π⁻ π⁰
 3.5 *10⁶
- π⁻ 2π⁰
 4*10⁶ diffractive (P- exchange), quite pure
- π⁻ 3π⁰
 0.2*10⁶ R –ex; x-sect. ↓ w. √s↑;
 bckg+
- π⁻ η(→ 3π⁰) 2.6*10⁴
- π⁻ η(→2γ) 0.2*10⁶
- Similar Br, but different efficiency (cuts, acceptance, absorption) 4 γ +
- π⁻ π⁰ η(→2γ)
 0.2*10⁶ ℝ- ex
- $\pi^{-}\eta(\rightarrow 2\gamma) \eta(\rightarrow 2\gamma)$ 10⁴ P- ex; rather pure

m, GeV/c²

$\pi^{-} 3\pi^{0}$ system

$\pi^{-}\pi^{0}\pi^{0}$ system

- Good "exclusivity" \rightarrow clean sample
- stat. ~4 x COMPASS (F.Nerling, MESON2012)
 - ~ 1 x E852 (A.R.Dzierba e.a. PR D73, 072001(2006))
- $\rightarrow \gamma$ effective (transparent) setup
- → Low- |t'| region included compared w. COMPASS & E852 particularly important for $\pi(1300) \& \pi(1800)$
- Counterpart of well studied $\pi^- \pi^- \pi^+$
- \rightarrow no neutral ρ 's \rightarrow easier access to f₀'s (?)
- Promising for PWA \rightarrow
- preliminary evaluation of data

$\pi^{-}\pi^{0}\pi^{0}$ system (cont'd)

$\pi^{-}\pi^{0}\pi^{0}$ system: mass spectra

π (1800) region: 1.7 GeV/c² < M(π⁻ π⁰ π⁰) < 1.9 GeV/c²

$\pi^{-}\pi^{0}\pi^{0}$ system: PWA

- State-of-art PWA framework (used further in COMPASS, F.Nerling report)
- Large set (44) of waves
- Density matrix of rank-2
- Simplified model for setup (geometrical acceptance only)
- Demonstration of analyses feasibility

$π^- π^0 π^0$ system: MC(PWA) vs. RD

π⁻ π⁰ π⁰ system: more MC vs. RD f₀(1500) case

RD MC PWA w/o $f_0(1500)$ MC PWA w. $f_0(1500)$

First look on $\pi^{-} \pi^{0} \pi^{0}$ system: Summary

2 production mechanisms:

- i. (first) Coherent diffraction (|t'|=0-0.03 GeV²/c²) on Be nucleus
- high intensities of $J^{PC}=0^{-+} \rightarrow (\pi^0 \pi^0)_{S} \pi^{-}$ study of $\pi(1300)$, $\pi(1800)$ and f_0 's
- high coherence of amplitudes 0⁻⁺, 1⁺⁺, 2⁻⁺, ... with spin projection M=0 study of resonances in comparison with π⁻ π⁻ π⁺ case
- ii. Incoherent production ($|t'| > 0.1 \text{ GeV}^2/c^2$)
- stat. compatible with COMPASS -2008 on proton
- 2++, 4++, ... w. M=1 enhanced
- exotic $\pi_1(1600)$ (J^{PC}=1 ⁻⁺ with M=1) still highly disputed

$\pi^{-}\pi^{0}$ η system search for ISB-decay $\pi^{-}(1800) \rightarrow \pi^{-} f_{0}(980) \rightarrow \pi^{-} a_{0}(980)$

$\pi^{-}\pi^{0}\eta$ system

$\pi^{-}\eta\eta$ system

Stat.: 8x "old" VES (PAN 59 (1996) 976), 2x E852 (PLB 660 (2008) 466)

mass_cut

Summary

- The VES upgrade to be finished soon
- The first new data available, processing ongoing, more data expected this year
 - good performance of EMC
 - one-prong systems feasible
 - room for strong improvement of tracking
- Competitive for non- P- ex and/or multi-gamma modes
- **1-st candidate:** $\pi^- 2\pi^0$ prospective for PWA
 - \rightarrow first in coherent production
 - \rightarrow access to J^{PC}=0⁻⁺ -> ($\pi^0 \pi^0$)_S π^-
 - → Clear $f_0(980)$ in **\pi(1800) region**
- Next: π⁻ 3π⁰ and π⁻ π⁰ η: large statistics ready for analyses
- More systems to come soon

Thank you for attention

Backup slide: $\pi^- \pi^0$ system

Backup slide: **π**⁻ η system

Backup slide: $\pi^{-}\pi^{0}\eta$ system

Backup slide: $\pi^{-}\pi^{0}\pi^{0}$ system PWA

Backup slide: $\pi^- \pi^0 \pi^0$ PWA totals

