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INTRODUCTION

all hadrons - including also conventional mesons

- (qq̄) bound states - are compound of constituent quarks

⇒ in EM interactions manifest non-point-like EM

structure

- completely described by scalar functions Fi(t)

(EM FFs), t - squared momentum transferred by the vir-

tual photon γ∗
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- if Mγ∗ →M ⇒ Fi(t) elastic FFs

- if Mγ∗ → A′ or γ ⇒ Fi(t) transition FFs

According to SU(3) classification there are:

scalar mesons 0+:

f0(600), K∗0 (800), f0(980), a0(980) - the most complete

multiplet, however not necessarily (qq̄) bound states

or f0(1370), K∗0 (1430), a0(1450), f0(1500) - regular

nonet

pseudoscalar mesons 0−:

π,K, K̄, η, η′

vector mesons 1−:

ρ(770), ω(782), K∗(892), K̄∗(892), φ(1020)

tensor mesons 2+:

f2(1270), a2(1320), f ′2(1525), f2(1950), f2(2010), f2(2300), f2(2340)

all bound states of light quarks - u, d, s.
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Note:

For a description of the meson EM structure

we use Unitary&Analytic (U&A) model

- to be consistent unification of pole and contin-

uum contributions

- it depends on effective tin thresholds - free pa-

rameters

- it depends on the coupling constant ratios

(fMMV /fV ) - also free parameters

In order to determine free parameters of the

U&A model - one needs its comparison with some

exp. data.

THEREFORE - farther our attention concen-

trated only to the nonet of pseudoscalar mesons:

π−, π0, π+, K−, K0, K̄0, K+, η, η′

for which abundant exp. information exists.
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FIRST GENERALLY

Since pseudoscalar mesons M have spin 0−

⇒ only one FF Fi(t) - describes the meson

EM structure completely, to be defined by the para-

metrization of the matrix element of the EM current

< p2|Jµ(0)|p1 >= eFM(t)(p1 + p2)µ (1)

Making use of the transformation:

Jµ(x) and also the one-particle state vectors < p2| and

|p1 > |
with regard to all three discrete C,P, T trans-

formations simultaneously

⇒ FM(t) = −FM̄(t) e.g. Fπ+(t) = −Fπ−(t);FK+(t) =

−FK−(t);FK0(t) = −FK̄0(t)

From the latter it follows for true neutral pseudoscalar

mesons: π0, η, η′
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Fπ0(t) = Fη(t) = Fη′(t) ≡ 0 (2)

for all values from the interval −∞ < t < +∞.

U&A MODEL OF MESON EM FFs.

General belief - all EM FFs are analytic in t-plane,

besides (branch points) i.e. cuts on the posi-

tive real axis.

U&A model - consistent unification (see Fig.1) of:

• finite number of complex conjugate pairs of poles - re-

flect an experimental fact of a creation of unstable

neutral vector-meson resonances with pho-

tonic quantum numbers in e+e− annihilation processes

into hadrons.

• two cut approximation of the analytic properties on

5



poles branch points

v

D

* = +
v

Figure 1: Contributing diagrams to EM FF.
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Figure 2: Standard VMD model representation of EM FFs.

the first (called physical) sheet of the Riemann sur-

face, by means of which just continua contribu-

tions are taken into account.

Experimental fact of the creation of ρ, ω, φ, ρ′, ω′, φ′, etc.

in e+e− → hadrons in the first approximation can

be taken into account by the standard VMD model with

stable vector mesons (see Fig.2)
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FM(t) =
∑

V

m2
V

m2
V − t

(fMMV /fV ), (3)

which automatically respects the asymptotic be-

havior of pseudoscalar meson EM FFs

FM(t)|t|→∞ ∼ t−1 (4)

as predicted by the constituent quark model of

hadrons.

Afterwards the VMD model is unitarized by an

incorporation of two-cut approximation of the analytic

properties of EM FFs with the help of the non-linear

transformation

t = t0 +
4(tin − t0)

[1/W (t)−W (t)]2
, (5)

where:
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- t0 - the square-root branch point corresponding to

the lowest possible threshold

- tin - an effective square-root branch point

simulating contributions of all higher relevant thresholds

given by the unitarity condition

W (t) = i

√
(tin−t0t0

)1/2 + (t−t0t0
)1/2 −

√
(tin−t0t0

)1/2 − (t−t0t0
)1/2

√
(tin−t0t0

)1/2 + (t−t0t0
)1/2 +

√
(tin−t0t0

)1/2 − (t−t0t0
)1/2

(6)

is the conformal mapping of the four-sheeted Rie-

mann surface into one W -plane, to be just inverse to

the previous non-linear transformation.

As a result - every term
m2
V

m2
V−t

in VMD representation

is factorized
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m2
r

m2
r − t

= (
1−W 2

1−W 2
N

)2 ×

×(WN −Wr0)(WN + Wr0)(WN − 1/Wr0)(WN + 1/Wr0)

(W −Wr0)(W + Wr0)(W − 1/Wr0)(W + 1/Wr0)

into:

• asymptotic term ( 1−W 2

1−W 2
N

)2 completely determin-

ing the asymptotic behavior ∼ t−1 of EM FF

• and into a resonant term

(WN−Wr0)(WN+Wr0)(WN−1/Wr0)(WN+1/Wr0)
(W−Wr0)(W+Wr0)(W−1/Wr0)(W+1/Wr0) ,

for | t |→ ∞ turning out to real constant.

The subindex ”0” means that still stable vector-

mesons are considered.

Generally one can prove

• if m2
r − Γ2

r/4 < tin ⇒ Wr0 = −W ∗
r0

• if m2
r − Γ2

r/4 > tin ⇒ Wr0 = 1/W ∗
r0
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which lead

- in the first case to the expression

m2
r

m2
r − t

=




1−W 2

1−W 2
N




2

×

×(WN −Wr0)(WN −W ∗
r0)(WN − 1/Wr0)(WN − 1/W ∗

r0)

(W −Wr0)(W −W ∗
r0)(W − 1/Wr0)(W − 1/W ∗

r0)

- and in the second case to the following expression

m2
r

m2
r − t

=




1−W 2

1−W 2
N




2

×

×(WN −Wr0)(WN −W ∗
r0)(WN + Wr0)(WN + W ∗

r0)

(W −Wr0)(W −W ∗
r0)(W + Wr0)(W + W ∗

r0)

Finally, introducing the non-zero widths of res-

onances by a formal substitution

m2
r → (mr − Γr/2)2

i.e. simply one has to rid of 0 in subindices, one

gets:

- when the resonance is below tin
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m2
r

m2
r − t

→



1−W 2

1−W 2
N




2

×

×(WN −Wr)(WN −W ∗
r )(WN − 1/Wr)(WN − 1/W ∗

r )

(W −Wr)(W −W ∗
r )(W − 1/Wr)(W − 1/W ∗

r )

- and when the resonance is beyond tin

m2
r

m2
r − t

→



1−W 2

1−W 2
N




2

×

×(WN −Wr)(WN −W ∗
r )(WN + Wr)(WN + W ∗

r )

(W −Wr)(W −W ∗
r )(W + Wr)(W + W ∗

r )

where no more equality can be used in these relations!

Consequently, theU&Amodel of meson EM struc-

ture takes the form

FP [W (t)] =


 1−W 2

1−W 2
N




2

×

×
{∑

i

(WN −Wi)(WN −W ∗
i )(WN − 1/Wi)(WN − 1/W ∗

i )

(W −Wi)(W −W ∗
i )(W − 1/Wi)(W − 1/W ∗

i )
(fiPP/fi) +

+
∑

j

(WN −Wj)(WN −W ∗
j )(WN +Wj)(WN +W ∗

j )

(W −Wj)(W −W ∗
j )(W +Wj)(W +W ∗

j )
(fjPP/fj)

}

which is analytic in the whole complex t-plane

besides two cuts on the positive real axis.
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Figure 3: Analytic properties of charged pion EM FF.

NOW ONE BY ONE

π±: The analytic properties of Fπ(t) are in Fig.3.

In comparison with expression FP [W (t)] - there is ad-

ditional left-hand cut on the II.Riemann sheet.

Explanation

Starting from the elastic unitarity condition for

Fπ(t)

1
2i{Fπ(t + iε)− F ∗π (t + iε)} = A1∗

1 (t + iε).Fπ(t + iε)

one can derive the expression for pion EM FF on

the II.Riemann sheet

[Fπ(t)]II. = Fπ(t)
1+2iA1

1(t)

whereA1
1(t) is the P -wave isovector ππ-scattering
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amplitude, the analytic properties of which consist

- of right-hand unitary cut 4m2
π < t <∞

- and of left-hand dynamical cut −∞ < t < 0.

NOTE a)

The contribution of any cut in Pad’e approximation

can be represented by alternating zeros and poles

on the place of the cut

⇒ we do it in U&A model of Fπ[W (t)].

NOTE b)

From the same elastic unitarity condition and

δ1
1(t)q→0 ∼ a1

1q
3 one gets the threshold behavior of

ImFπ(t) to be transformed into 3 threshold condi-

tions

ImFπ(t)q=0 = dImFπ(t)
dq q=0

= d2ImFπ(t)
dq q=0

≡ 0, which

reduce a number of (fvππ/fv) as free parameters.
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Taking into account both these Notes and also the

normalization explicitly one gets the U&A pion EM

FF model

Fπ[W (t)] =




1−W 2

1−W 2
N




2
(W −Wz)(WN −Wp)

(WN −Wz)(W −Wp)
×

×
{(WN −Wρ)(WN −W ∗

ρ )(WN − 1/Wρ)(WN − 1/W ∗
ρ )

(W −Wρ)(W −W ∗
ρ )(W − 1/Wρ)(W − 1/W ∗

ρ )
(fρππ/fρ) +

+
∑

v=ρ′,ρ′′

(WN −Wv)(WN −W ∗
v )(WN + Wv)(WN + W ∗

v )

(W −Wv)(W −W ∗
v )(W + Wv)(W + W ∗

v )
(fvππ/fv)

}

with

(fρ′ππ/fρ′) =

N
ρ′′

|W
ρ′′ |4

N
ρ′

|Wρ′ |4
−

N
ρ′′

|Wρ′′ |4
−

−
Nρ′′
|Wρ′′ |4

+(1+2
Wz.Wp
Wz−Wp .Re[Wρ(1+|Wρ|−2)])Nρ

Nρ′
|W
ρ′ |4
−

Nρ′′
|W
ρ′′ |4

(fρππ/fρ)

(fρ′′ππ/fρ′′) = 1−
N
ρ′′

|Wρ′′ |4
Nρ′
|Wρ′ |4

−
Nρ′′
|Wρ′′ |4

+

+ [

Nρ′′
|Wρ′′ |4

+(1+2
Wz.Wp
Wz−Wp .Re[Wρ(1+|Wρ|−2)])Nρ

Nρ′
|Wρ′ |4

−
Nρ′′
|Wρ′′ |4

− 1](fρππ/fρ)
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Due to the ρ − ω interference effect one has to

carry out the fit of existing data by

| Fπ[W (t)] + R.eiφ m2
ω

m2
ω−t−imωΓω

|
with

φ = arctg
mρΓρ
m2
ρ−m2

ω
.

A description of existing data in space-like and

time-like regions simultaneously with parameters values

tin = (1.296± 0.011)GeV 2 R = 0.0123± 0.0032

Wz = 0.3722± 0.0008 Wp = 0.5518± 0.0003

mρ = (759.26± 0.04)MeV Γρ = (141.90± 0.13)MeV

mρ′ = (1395.9±54.3)MeV Γρ′ = (490.9±118.8)MeV

mρ′′ = (1711.5±63.6)MeV Γρ′′ = (369.5±112.7)MeV

(fρππ/fρ) = 1.0063± 0.0024 χ2/ndf = 1.58

is presented in Fig.4.
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Figure 4: Prediction of pion EM FF behavior by U&A model.
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K±, K0:

The K+ and K0 belong to the same isomultiplet with

I = 1/2

⇒ one can introduce, generally, the EM current of K,

which splits into sum of isotopic scalar and isotopic

vector.

The corresponding FFs suitable for a construction of

the U&A models are

F s
K(t) = 1

2[FK+(t)+FK0(t)] FK+(t) = F s
K(t)+F v

K(t)

F v
K(t) = 1

2[FK+(t)−FK0(t)] FK0(t) = F s
K(t)−F v

K(t)

from where the normalizations

F s
K(0) = F v

K(0) = 1
2; FK+(0) = 1; FK0(0) = 0;

follow.
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The specific 6 - resonance (ρ, ω, φ, ρ′, φ′, ρ′′) U&A

model of the kaon EM structure has the form

F s
K [V (t)] =

(
1− V 2

1− V 2
N

)2[
1

2

(VN − Vω)(VN − V ∗ω )(VN − 1/Vω)(VN − 1/V ∗ω )

(V − Vω)(V − V ∗ω )(V − 1/Vω)(V − 1/V ∗ω )
+

+

{
(VN − Vφ)(VN − V ∗φ )(VN − 1/Vφ)(VN − 1/V ∗φ )

(V − Vφ)(V − V ∗φ )(V − 1/Vφ)(V − 1/V ∗φ )
−

−(VN − Vω)(VN − V ∗ω )(VN − 1/Vω)(VN − 1/V ∗ω )

(V − Vω)(V − V ∗ω )(V − 1/Vω)(V − 1/V ∗ω )

}
(fφKK/fφ) + (7)

+

{
(VN − Vφ′)(VN − V ∗φ′)(VN − 1/Vφ′)(VN − 1/V ∗φ′)

(V − Vφ′)(V − V ∗φ′)(V − 1/Vφ′)(V − 1/V ∗φ′)
−

−(VN − Vω)(VN − V ∗ω )(VN − 1/Vω)(VN − 1/V ∗ω )

(V − Vω)(V − V ∗ω )(V − 1/Vω)(V − 1/V ∗ω )

}
(fφ′KK/fφ′)

]

F v
K [W (t)] =

(
1−W 2

1−W 2
N

)2[
1

2

(WN −Wρ)(WN −W ∗
ρ )(WN − 1/Wρ)(WN − 1/W ∗

ρ )

(W −Wρ)(W −W ∗
ρ )(W − 1/Wρ)(W − 1/W ∗

ρ )
+

+

{
(WN −Wρ′)(WN −W ∗

ρ′)(WN − 1/Wρ′)(WN − 1/W ∗
ρ′)

(W −Wρ′)(W −W ∗
ρ′)(W − 1/Wρ′)(W − 1/W ∗

ρ′)
−

−(WN −Wρ)(WN −W ∗
ρ )(WN − 1/Wρ)(WN − 1/W ∗

ρ )

(W −Wρ)(W −W ∗
ρ )(W − 1/Wρ)(W − 1/W ∗

ρ )

}
(fρ′KK/fρ′) + (8)

+

{
(WN −Wρ′′)(WN −W ∗

ρ′′)(WN − 1/Wρ′′)(WN − 1/W ∗
ρ′′)

(W −Wρ′′)(W −W ∗
ρ′′)(W − 1/Wρ′′)(W − 1/W ∗

ρ′′)
−

−(WN −Wρ)(WN −W ∗
ρ )(WN − 1/Wρ)(WN − 1/W ∗

ρ )

(W −Wρ)(W −W ∗
ρ )(W − 1/Wρ)(W − 1/W ∗

ρ )

}
(fρ′′KK/fρ′′)

]

Both functions are analytic in the whole com-

18



plex t-planes besides two cuts on the positive

real axis, generated by ts0 = 9m2
π and tsin in F s

K [V (t)]

and by tv0 = 4m2
π and tin in F v

K [W (t)].

- they are real on the whole real negative axis

up to positive values ts0 = 9m2
π and tv0 = 4m2

π,

respectively

- automatically normalized to 1/2 with ImF s
K(t) 6=

0 and ImF v
K(t) 6= 0, starting from 9m2

π and 4m2
π, re-

spectively, as it is required by the unitarity con-

ditions.

- they possess complex conjugate pairs of poles

on unphysical sheets of the Riemann surface, correspond-

ing to considered vector-mesons with quantum numbers

of the photon.

A simultaneous reproduction of all existing kaon

EM FF data by the U&A models is presented in Fig.5

and Fig.6
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Figure 5: Prediction of charge kaon EM FF behavior by U&A model.

Figure 6: Prediction of neutral kaon EM FF behavior by U&A model.
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and the following values of free parameters of

the model have been determined - mρ,Γρ,mω,Γω are

fixed at the TABLE values.

qsin =
√

(tsin − 9)/9 = 2.2326[mπ]; qvin =
√

(tvin − 4)/4 = 6.6721[mπ]

(fωKK/fω) = 0.14194 (fρKK/fρ) = 0.5615

mφ = 7.2815[mπ] mρ′ = 10.3940[mπ]

Γφ = 0.03733[mπ] Γρ′ = 1.6284[mπ]

(fφKK/fφ) = 0.4002 (fρ′KK/fρ′) = −.3262

mφ′ = 11.8700[mπ] mρ′′ = 13.5650[mπ]

Γφ′ = 1.3834[mπ] Γρ′′ = 3.3313[mπ]

(fφ′KK/fφ′) = −.04214 (fρ′′KK/fρ′′) = −.02888

From the obtained results one observes that the con-

tribution of ρ′′′(2150) resonance to

e+e− → KK̄ processes

is favored prior to the ρ′′(1700) one by existing

data in the charge and neutral kaon EM FFs.
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What about π0, η, η′:

They are true neutral particles

⇒ their elastic EM FFs

Fπ0(t) = 0

Fη(t) = 0

Fη′(t) = 0

i.e. these particles are point-like according to EM

interactions !

However, one can define nonzero single FF for

each γ∗ → γP transition by a parametrization of the

matrix element of the EM current

JEMµ = 2/3ūγµu− 1/3γ̄µd− 1/3s̄γµs

< P (p) | JEMµ | 0 >= εµναβp
νεαkβFγP (q2)

εα - the polarization vector of γ

εµναβ - antisymmetric tensor
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The transition FF is related with total cross sections

σtot(e
+e− → Pγ) = πα2

6 (1− m2
P
t )3 | FPγ(t) |2

giving experimental data on Fπ0γ(t), Fηγ(t) and Fη′γ(t)

in t > 0 region.

A straightforward calculation of FPγ(t) in QCD

impossible !

One has to construct sophisticated

phenomenological models.

In a construction of the U&A model - it is again suit-

able to split FPγ(t) into two terms depending on the iso-

topic character of the photon

FPγ(t) = F I=0
Pγ (t) + F I=1

Pγ (t)

F I=0
Pγ (t) - saturated by isoscalar vector-mesons

ω, φ, ω′, φ′ etc.

F I=1
Pγ (t) - saturated by isovector vector-mesons

ρ, ρ′, ρ′′ etc.
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QUESTION - how many vector-meson resonances have

to be taken into account?

It is prescribed by the existing data interval

on the corresponding FF in t > 0 region.

The data on π0γ transition FF allow to consider all 3

ground state vector mesons: ρ(770), ω(782), φ(1020)

and also ω′(1420) and ρ′(1450), in order to construct au-

tomatically normalized U&A models.

NOTE:

With the aim of obtaining comparable results, the

same number of resonances is considered also for η and

η′.

Further:

- the resonance parameters are fixed at the TA-

BLE values

- the normalization of FFs are
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FPγ(0) = 2
αmP

√
Γ(P→γγ)
πmP

where Γ(P → γγ) are fixed at the world averaged

values from TABLE

- the analytic properties of FPγ(t) - FFs are an-

alytic in t - plane besides the cut from t = m2
π0 up to

+∞.

⇒ the U&A model of FPγ(t) takes the form

F I=0
Pγ [V (t)] =

(
1− V 2

1− V 2
N

)2
× (9)

×{1
2
FPγ(0)H(ω′) + [L(ω)−H(ω′)]aω + [H(φ)−H(ω′)]aφ}

F I=1
Pγ [W (t)] =

(
1−W 2

1−W 2
N

)2
× (10)

×{1
2
FPγ(0)H(ρ′) + [L(ρ)−H(ρ′)]aρ}

with

L(ω) = (VN−Vω)(VN−V ∗ω )(VN−1/Vω)(VN−1/V ∗ω )
(V−Vω)(V−V ∗ω )(V−1/Vω)(V−1/V ∗ω )

H(i) = (VN−Vi)(VN−V ∗i )(VN+Vi)(VN+V ∗i )
(V−Vi)(V−V ∗i )(V+Vi)(V+V ∗i ) , i = φ, ω′
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L(ρ) =
(WN−Wρ)(WN−W ∗ρ )(WN−1/Wρ)(WN−1/W ∗ρ )

(W−Wρ)(W−W ∗ρ )(W−1/Wρ)(W−1/W ∗ρ )

H(ρ′) =
(WN−Wρ′)(WN−W ∗ρ′)(WN+Wρ′)(WN+W ∗

ρ′)
(W−Wρ′)(W−W ∗ρ′)(W+Wρ′)(W+W ∗

ρ′)

and the normalization points

V (0) = VN , W (0) = WN .

The model depends on 5 free parameters

tsin, t
v
in, aj = (fγPj/fj), j = ρ, ω, φ

determined in an optimal description of exist-

ing data.

for π0: see Fig.7

qsin = 5.5210± 0.0084 qvin = 5.61220± 0.1414

aω = 0.0063± 0.0013 aρ = 0.0212± 0.0006

aφ = −.0004± 0.0001 χ2/ndf = 121/75 = 1.61
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Figure 7: Prediction of π0γ transition EM FF behavior by U&A model.

for η: see Fig.8

qsin = 6.7104± 0.0190 qvin = 5.5006± 0.0632

aω = 0.0002± 0.0014 aρ = 0.0250± 0.0013

aφ = −.0020± 0.0003 χ2/ndf = 52/52 = 1.00

for η′: see Fig.9

qsin = 5.5366± 0.0891 qvin = 7.7554± 0.0158

aω = −.1134± 0.0078 aρ = 0.1241± 0.0026

aφ = 0.0098± 0.0091 χ2/ndf = 59/50 = 1.18
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Figure 8: Prediction of ηγ transition EM FF behavior by U&A model.

Figure 9: Prediction of η′γ transition EM FF behavior by U&A model.
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CONCLUSIONS

• We have investigated EM structure of pseudoscalar

mesons to be described by corresponding EM FFs.

• Since there is no possibility to describe the

latter in the framework of QCD, the universal

U&A models have been elaborated.

• More or less successful description of all ex-

isting data on the whole complete nonet

π−, π0, π+, K−, K0, K̄0, K+, η, η′ has been achieved

in space-like and time-like regions simultaneously.
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