MESON ELECTROMAGNETIC FORM FACTORS

Stanislav Dubnička

Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovak Republic

Anna Z. Dubničková Department of Theoretical Physics, Comenius University., Bratislava, Slovak Republic

INTRODUCTION

all hadrons - including also conventional mesons - $(q\bar{q})$ bound states - are compound of constituent quarks \Rightarrow in EM interactions manifest **non-point-like EM** structure

- completely described by scalar functions $F_i(t)$ (EM FFs), t - squared momentum transferred by the virtual photon γ^*

- if
$$M\gamma^* \to M \Rightarrow F_i(t)$$
 elastic FFs

- if
$$M\gamma^* \to A'$$
 or $\gamma \Rightarrow F_i(t)$ transition FFs

According to SU(3) classification there are:

scalar mesons 0^+ :

 $f_0(600), K_0^*(800), f_0(980), a_0(980)$ - the most complete multiplet, however **not necessarily** $(q\bar{q})$ bound states

or $f_0(1370), K_0^*(1430), a_0(1450), f_0(1500)$ - regular nonet

pseudoscalar mesons 0⁻:

 $\pi, K, \bar{K}, \eta, \eta'$

<u>vector mesons</u> 1^- :

 $\rho(770), \omega(782), K^*(892), \bar{K}^*(892), \phi(1020)$

tensor mesons 2^+ :

 $f_2(1270), a_2(1320), f'_2(1525), f_2(1950), f_2(2010), f_2(2300), f_2(2340)$ all bound states of light quarks - u, d, s.

Note:

For a description of the meson EM structure we use Unitary&Analytic (U&A) model

- to be consistent unification of pole and continuum contributions

- it depends on **effective** t_{in} **thresholds** - free parameters

- it depends on the **coupling constant ratios** (f_{MMV}/f_V) - also free parameters

In order to determine free parameters of the U&A model - one needs its comparison with some exp. data.

THEREFORE - farther our attention concentrated only to the nonet of pseudoscalar mesons:

$$\pi^-, \pi^0, \pi^+, K^-, K^0, \bar{K}^0, K^+, \eta, \eta'$$

for which abundant exp. information exists.

FIRST GENERALLY

Since pseudoscalar mesons M have spin 0^-

 \Rightarrow only one FF $F_i(t)$ - describes the meson EM structure completely, to be defined by the parametrization of the matrix element of the EM current

$$< p_2 |J_\mu(0)| p_1 > = e F_M(t) (p_1 + p_2)_\mu$$
 (1)

Making use of the transformation:

 $J_{\mu}(x)$ and also the one-particle state vectors $< p_2|$ and $|p_1>|$

with regard to all three discrete C, P, T transformations simultaneously

$$\Rightarrow F_M(t) = -F_{\bar{M}}(t) \text{ e.g. } F_{\pi^+}(t) = -F_{\pi^-}(t); F_{K^+}(t) = -F_{K^-}(t); F_{K^0}(t) = -F_{\bar{K}^0}(t)$$

From the latter it follows for **true neutral pseudoscalar** mesons: π^0, η, η'

$$F_{\pi^0}(t) = F_{\eta'}(t) = F_{\eta'}(t) \equiv 0 \tag{2}$$

for all values from the interval $-\infty < t < +\infty$.

U&A MODEL OF MESON EM FFs.

General belief - all EM FFs are analytic in t-plane, besides (branch points) i.e. cuts on the positive real axis.

 $U\&A \mod -$ consistent unification (see Fig.1) of:

- finite number of complex conjugate pairs of poles reflect an experimental fact of a creation of **unstable neutral vector-meson resonances** with photonic quantum numbers in e^+e^- annihilation processes into hadrons.
- two cut approximation of the analytic properties on

Figure 1: Contributing diagrams to EM FF.

Figure 2: Standard VMD model representation of EM FFs.

the first (called physical) sheet of the Riemann surface, by means of which **just continua contributions** are taken into account.

Experimental fact of the creation of $\rho, \omega, \phi, \rho', \omega', \phi', etc.$ in $e^+e^- \rightarrow hadrons$ in the **first approximation** can be taken into account by the standard VMD model with stable vector mesons (see Fig.2)

$$F_M(t) = \sum_V \frac{m_V^2}{m_V^2 - t} (f_{MMV}/f_V), \qquad (3)$$

which automatically respects the asymptotic behavior of pseudoscalar meson EM FFs

$$F_M(t)_{|t| \to \infty} \sim t^{-1} \tag{4}$$

as **predicted by the constituent quark model** of hadrons.

Afterwards the VMD model is **unitarized** by an incorporation of two-cut approximation of the analytic properties of EM FFs with the help of the **non-linear transformation**

$$t = t_0 + \frac{4(t_{in} - t_0)}{[1/W(t) - W(t)]^2},$$
(5)

where:

- t_0 - the square-root branch point corresponding to the **lowest possible threshold**

- t_{in} - an effective square-root branch point simulating contributions of all higher relevant thresholds given by the unitarity condition

$$W(t) = i \frac{\sqrt{\left(\frac{t_{in}-t_0}{t_0}\right)^{1/2} + \left(\frac{t-t_0}{t_0}\right)^{1/2}} - \sqrt{\left(\frac{t_{in}-t_0}{t_0}\right)^{1/2} - \left(\frac{t-t_0}{t_0}\right)^{1/2}}}{\sqrt{\left(\frac{t_{in}-t_0}{t_0}\right)^{1/2} + \left(\frac{t-t_0}{t_0}\right)^{1/2}} + \sqrt{\left(\frac{t_{in}-t_0}{t_0}\right)^{1/2} - \left(\frac{t-t_0}{t_0}\right)^{1/2}}}$$
(6)

is the **conformal mapping** of the four-sheeted Riemann surface into one W-plane, to be just **inverse** to the previous **non-linear transformation**.

As a result - every term $\frac{m_V^2}{m_V^2 - t}$ in VMD representation is **factorized**

$$\frac{m_r^2}{m_r^2 - t} = \left(\frac{1 - W^2}{1 - W_N^2}\right)^2 \times \frac{(W_N - W_{r0})(W_N + W_{r0})(W_N - 1/W_{r0})(W_N + 1/W_{r0})}{(W - W_{r0})(W + W_{r0})(W - 1/W_{r0})(W + 1/W_{r0})}$$

into:

- asymptotic term $(\frac{1-W^2}{1-W_N^2})^2$ completely determining the asymptotic behavior $\sim t^{-1}$ of EM FF
- and into a **resonant term** $\frac{(W_N - W_{r0})(W_N + W_{r0})(W_N - 1/W_{r0})(W_N + 1/W_{r0})}{(W - W_{r0})(W + W_{r0})(W - 1/W_{r0})(W + 1/W_{r0})},$ for $|t| \rightarrow \infty$ turning out to **real constant**.

The subindex "0" means that **still stable vectormesons** are considered.

Generally one can prove

- if $m_r^2 \Gamma_r^2/4 < t_{in} \Rightarrow W_{r0} = -W_{r0}^*$
- if $m_r^2 \Gamma_r^2/4 > t_{in} \Rightarrow W_{r0} = 1/W_{r0}^*$

which lead

- in the ${\bf first}~{\bf case}$ to the expression

$$\frac{m_r^2}{m_r^2 - t} = \left(\frac{1 - W^2}{1 - W_N^2}\right)^2 \times \frac{(W_N - W_{r0})(W_N - W_{r0}^*)(W_N - 1/W_{r0})(W_N - 1/W_{r0}^*)}{(W - W_{r0})(W - W_{r0}^*)(W - 1/W_{r0})(W - 1/W_{r0}^*)}$$

- and in the **second case** to the following expression

$$\frac{m_r^2}{m_r^2 - t} = \left(\frac{1 - W^2}{1 - W_N^2}\right)^2 \times \frac{(W_N - W_{r0})(W_N - W_{r0}^*)(W_N + W_{r0})(W_N + W_{r0}^*)}{(W - W_{r0})(W - W_{r0}^*)(W + W_{r0})(W + W_{r0}^*)}$$

Finally, introducing the non-zero widths of resonances by a formal substitution

$$m_r^2 \to (m_r - \Gamma_r/2)^2$$

i.e. simply one has **to rid of** 0 **in subindices**, one gets:

- when the **resonance is below** t_{in}

$$\frac{m_r^2}{m_r^2 - t} \to \left(\frac{1 - W^2}{1 - W_N^2}\right)^2 \times \frac{(W_N - W_r)(W_N - W_r^*)(W_N - 1/W_r)(W_N - 1/W_r^*)}{(W - W_r)(W - W_r^*)(W - 1/W_r)(W - 1/W_r^*)}$$

- and when the **resonance is beyond** t_{in}

$$\frac{m_r^2}{m_r^2 - t} \to \left(\frac{1 - W^2}{1 - W_N^2}\right)^2 \times \frac{(W_N - W_r)(W_N - W_r^*)(W_N + W_r)(W_N + W_r^*)}{(W - W_r)(W - W_r^*)(W + W_r)(W + W_r^*)}$$

where **no more equality** can be used in these relations!

Consequently, the U&A model of meson EM structure takes the form

$$F_P[W(t)] = \left(\frac{1 - W^2}{1 - W_N^2}\right)^2 \times \left\{\sum_i \frac{(W_N - W_i)(W_N - W_i^*)(W_N - 1/W_i)(W_N - 1/W_i^*)}{(W - W_i)(W - W_i^*)(W - 1/W_i)(W - 1/W_i^*)}(f_{iPP}/f_i) + \sum_j \frac{(W_N - W_j)(W_N - W_j^*)(W_N + W_j)(W_N + W_j^*)}{(W - W_j)(W - W_j^*)(W + W_j)(W + W_j^*)}(f_{jPP}/f_j)\right\}$$

which is analytic in the whole complex *t*-plane besides two cuts on the positive real axis.

Figure 3: Analytic properties of charged pion EM FF.

NOW ONE BY ONE

 $\underline{\pi^{\pm}}$: The **analytic properties** of $F_{\pi}(t)$ are in *Fig.*3. In comparison with expression $F_P[W(t)]$ - there is additional **left-hand cut on the II.Riemann sheet**. **Explanation**

Starting from the elastic unitarity condition for $F_{\pi}(t)$

$$\frac{1}{2i} \{ F_{\pi}(t+i\varepsilon) - F_{\pi}^*(t+i\varepsilon) \} = A_1^{1*}(t+i\varepsilon) \cdot F_{\pi}(t+i\varepsilon)$$

one can derive the expression for **pion EM FF on**

the II.Riemann sheet

 $[F_{\pi}(t)]^{II.} = \frac{F_{\pi}(t)}{1+2iA_{1}^{1}(t)}$

where $A_1^1(t)$ is the *P*-wave isovector $\pi\pi$ -scattering

amplitude, the analytic properties of which consist

- of right-hand unitary cut $4m_{\pi}^2 < t < \infty$

- and of **left-hand dynamical cut** $-\infty < t < 0$.

NOTE a)

The contribution of any cut in Pad'e approximation can be **represented by alternating zeros and poles** on the place of the cut

 \Rightarrow we do it in U&A model of $F_{\pi}[W(t)]$.

NOTE b)

From the same elastic unitarity condition and $\delta_1^1(t)_{q\to 0} \sim a_1^1 q^3$ one gets the threshold behavior of $ImF_{\pi}(t)$ to be transformed into 3 threshold conditions

 $ImF_{\pi}(t)_{q=0} = \frac{dImF_{\pi}(t)}{dq}_{q=0} = \frac{d^2ImF_{\pi}(t)}{dq}_{q=0} \equiv 0$, which reduce a number of $(f_{v\pi\pi}/f_v)$ as free parameters.

Taking into account both these **Notes** and also the normalization explicitly one gets the U&A pion EM FF model

$$F_{\pi}[W(t)] = \left(\frac{1-W^2}{1-W_N^2}\right)^2 \frac{(W-W_z)(W_N-W_p)}{(W_N-W_z)(W-W_p)} \times \left\{\frac{(W_N-W_\rho)(W_N-W_\rho^*)(W_N-1/W_\rho)(W_N-1/W_\rho^*)}{(W-W_\rho)(W-W_\rho^*)(W-1/W_\rho)(W-1/W_\rho^*)}(f_{\rho\pi\pi}/f_\rho) + \sum_{v=\rho',\rho''}\frac{(W_N-W_v)(W_N-W_v^*)(W_N+W_v)(W_N+W_v^*)}{(W-W_v)(W-W_v^*)(W+W_v)(W+W_v^*)}(f_{v\pi\pi}/f_v)\right\}$$

with

$$\begin{split} & (f_{\rho'\pi\pi}/f_{\rho'}) = \frac{\frac{N_{\rho''}}{|W_{\rho''}|^4}}{\frac{N_{\rho'}}{|W_{\rho''}|^4} - \frac{N_{\rho''}}{|W_{\rho''}|^4}}{\frac{N_{\rho''}}{|W_{\rho''}|^4} - \frac{N_{\rho''}}{|W_{\rho''}|^4}}{\frac{N_{\rho''}}{|W_{\rho''}|^4}} - \\ & - \frac{\frac{N_{\rho''}}{|W_{\rho''}|^4} + (1+2\frac{W_{z}.W_{p}}{W_{z}-W_{p}}.Re[W_{\rho}(1+|W_{\rho}|^{-2})])N_{\rho}}{\frac{N_{\rho''}}{|W_{\rho''}|^4}} \\ & (f_{\rho''\pi\pi}/f_{\rho''}) = 1 - \frac{\frac{N_{\rho''}}{|W_{\rho''}|^4}}{\frac{N_{\rho''}}{|W_{\rho''}|^4}} + \\ & + [\frac{\frac{N_{\rho''}}{|W_{\rho''}|^4} + (1+2\frac{W_{z}.W_{p}}{W_{z}-W_{p}}.Re[W_{\rho}(1+|W_{\rho}|^{-2})])N_{\rho}}{\frac{N_{\rho'}}{|W_{\rho''}|^4}} - \frac{1](f_{\rho\pi\pi}/f_{\rho}) \end{split}$$

Due to the $\rho - \omega$ interference effect one has to carry out the fit of existing data by

$$\mid F_{\pi}[W(t)] + R.e^{i\phi} \frac{m_{\omega}^2}{m_{\omega}^2 - t - im_{\omega}\Gamma_{\omega}} \mid$$

with

$$\phi = arctg \frac{m_{\rho}\Gamma_{\rho}}{m_{\rho}^2 - m_{\omega}^2}.$$

A description of existing data in space-like and time-like regions simultaneously with parameters values

$$t_{in} = (1.296 \pm 0.011) GeV^2 \qquad R = 0.0123 \pm 0.0032$$
$$W_z = 0.3722 \pm 0.0008 \qquad W_p = 0.5518 \pm 0.0003$$
$$m_\rho = (759.26 \pm 0.04) MeV \qquad \Gamma_\rho = (141.90 \pm 0.13) MeV$$
$$m_{\rho'} = (1395.9 \pm 54.3) MeV \qquad \Gamma_{\rho'} = (490.9 \pm 118.8) MeV$$
$$m_{\rho''} = (1711.5 \pm 63.6) MeV \qquad \Gamma_{\rho''} = (369.5 \pm 112.7) MeV$$
$$(f_{\rho\pi\pi}/f_{\rho}) = 1.0063 \pm 0.0024 \qquad \chi^2/ndf = 1.58$$

is presented in Fig.4.

Figure 4: Prediction of pion EM FF behavior by U&A model.

 $\underline{K^{\pm}}, \underline{K^{0}}$:

The K^+ and K^0 belong to the same isomultiplet with I = 1/2

 \Rightarrow one can introduce, generally, the EM current of K, which splits into sum of **isotopic scalar** and **isotopic vector**.

The corresponding FFs suitable for a construction of the U&A models are

$$F_K^s(t) = \frac{1}{2} [F_{K^+}(t) + F_{K^0}(t)] \quad F_{K^+}(t) = F_K^s(t) + F_K^v(t)$$

$$F_{K}^{v}(t) = \frac{1}{2}[F_{K^{+}}(t) - F_{K^{0}}(t)] \quad F_{K^{0}}(t) = F_{K}^{s}(t) - F_{K}^{v}(t)$$

from where the normalizations

 $F_K^s(0) = F_K^v(0) = \frac{1}{2};$ $F_{K^+}(0) = 1;$ $F_{K^0}(0) = 0;$ follow.

The specific **6** - resonance $(\rho, \omega, \phi, \rho', \phi', \rho'') U\&A$ model of the kaon EM structure has the form

$$F_{K}^{s}[V(t)] = \left(\frac{1-V^{2}}{1-V_{N}^{2}}\right)^{2} \left[\frac{1}{2} \frac{(V_{N}-V_{\omega})(V_{N}-V_{\omega}^{*})(V_{N}-1/V_{\omega})(V_{N}-1/V_{\omega}^{*})}{(V-V_{\omega})(V-V_{\omega}^{*})(V-1/V_{\omega})(V-1/V_{\omega}^{*})} + \left\{\frac{(V_{N}-V_{\phi})(V_{N}-V_{\phi}^{*})(V_{N}-1/V_{\phi})(V_{N}-1/V_{\phi}^{*})}{(V-V_{\phi})(V-V_{\phi}^{*})(V-1/V_{\omega})(V-1/V_{\omega}^{*})}\right\} - \left[\frac{(V_{N}-V_{\omega})(V_{N}-V_{\omega}^{*})(V_{N}-1/V_{\omega})(V_{N}-1/V_{\omega}^{*})}{(V-V_{\omega})(V-V_{\omega}^{*})(V-1/V_{\omega})(V-1/V_{\omega}^{*})}\right] (f_{\phi KK}/f_{\phi}) + (7) + \left\{\frac{(V_{N}-V_{\phi'})(V_{N}-V_{\phi'}^{*})(V_{N}-1/V_{\phi'})(V_{N}-1/V_{\phi'})}{(V-V_{\phi'})(V-V_{\phi'}^{*})(V-1/V_{\omega})(V-1/V_{\omega}^{*})} - \frac{(V_{N}-V_{\omega})(V_{N}-V_{\omega}^{*})(V_{N}-1/V_{\omega})(V_{N}-1/V_{\omega})}{(V-V_{\omega})(V-V_{\omega}^{*})(V-1/V_{\omega})(V-1/V_{\omega}^{*})}\right\} (f_{\phi' KK}/f_{\phi'})\right]$$

$$F_{K}^{v}[W(t)] = \left(\frac{1-W^{2}}{1-W_{N}^{2}}\right)^{2} \left[\frac{1}{2} \frac{(W_{N}-W_{\rho})(W_{N}-W_{\rho}^{*})(W_{N}-1/W_{\rho})(W_{N}-1/W_{\rho}^{*})}{(W-W_{\rho})(W-W_{\rho}^{*})(W-1/W_{\rho})(W-1/W_{\rho}^{*})} + \left\{\frac{(W_{N}-W_{\rho'})(W_{N}-W_{\rho'}^{*})(W_{N}-1/W_{\rho'})(W_{N}-1/W_{\rho'})}{(W-W_{\rho'})(W-W_{\rho'}^{*})(W-1/W_{\rho})(W-1/W_{\rho'})} - \frac{(W_{N}-W_{\rho})(W_{N}-W_{\rho}^{*})(W_{N}-1/W_{\rho})(W_{N}-1/W_{\rho'}^{*})}{(W-W_{\rho})(W-W_{\rho}^{*})(W-1/W_{\rho})(W-1/W_{\rho'}^{*})}\right\} (f_{\rho'KK}/f_{\rho'}) + (8) + \left\{\frac{(W_{N}-W_{\rho'})(W_{N}-W_{\rho''}^{*})(W_{N}-1/W_{\rho''})(W_{N}-1/W_{\rho''})}{(W-W_{\rho''})(W-W_{\rho''})(W-1/W_{\rho''})(W-1/W_{\rho''}^{*})} - \frac{(W_{N}-W_{\rho})(W_{N}-W_{\rho}^{*})(W_{N}-1/W_{\rho})(W_{N}-1/W_{\rho''})}{(W-W_{\rho})(W-W_{\rho''})(W-1/W_{\rho''})(W-1/W_{\rho''})}\right\} (f_{\rho''KK}/f_{\rho''})\right]$$

Both functions are analytic in the whole com-

plex *t*-planes besides two cuts on the positive real axis, generated by $t_0^s = 9m_{\pi}^2$ and t_{in}^s in $F_K^s[V(t)]$ and by $t_0^v = 4m_{\pi}^2$ and t_{in} in $F_K^v[W(t)]$.

- they are real on the whole real negative axis up to positive values $t_0^s = 9m_{\pi}^2$ and $t_0^v = 4m_{\pi}^2$, respectively

- automatically **normalized** to 1/2 with $ImF_K^s(t) \neq 0$ and $ImF_K^v(t) \neq 0$, starting from $9m_{\pi}^2$ and $4m_{\pi}^2$, respectively, as it is **required by the unitarity conditions**.

- they possess **complex conjugate pairs of poles** on unphysical sheets of the Riemann surface, corresponding to considered vector-mesons with quantum numbers of the photon.

A simultaneous **reproduction of all existing kaon EM FF data** by the U&A models is presented in Fig.5and Fig.6

Figure 5: Prediction of charge kaon EM FF behavior by U&A model.

Figure 6: Prediction of neutral kaon EM FF behavior by U&A model.

and the following values of free parameters of the model have been determined - m_{ρ} , Γ_{ρ} , m_{ω} , Γ_{ω} are fixed at the TABLE values.

$$\begin{split} q_{in}^{s} &= \sqrt{(t_{in}^{s} - 9)/9} = 2.2326 [m_{\pi}]; q_{in}^{v} = \sqrt{(t_{in}^{v} - 4)/4} = 6.6721 [m_{\pi}] \\ (f_{\omega KK}/f_{\omega}) &= 0.14194 \quad (f_{\rho KK}/f_{\rho}) = 0.5615 \\ m_{\phi} &= 7.2815 [m_{\pi}] \quad m_{\rho'} = 10.3940 [m_{\pi}] \\ \Gamma_{\phi} &= 0.03733 [m_{\pi}] \quad \Gamma_{\rho'} = 1.6284 [m_{\pi}] \\ (f_{\phi KK}/f_{\phi}) &= 0.4002 \quad (f_{\rho' KK}/f_{\rho'}) = -.3262 \\ m_{\phi'} &= 11.8700 [m_{\pi}] \quad m_{\rho''} = 13.5650 [m_{\pi}] \\ \Gamma_{\phi'} &= 1.3834 [m_{\pi}] \quad \Gamma_{\rho''} = 3.3313 [m_{\pi}] \\ (f_{\phi' KK}/f_{\phi'}) &= -.04214 \quad (f_{\rho'' KK}/f_{\rho''}) = -.02888 \end{split}$$

From the obtained results one observes that the contribution of $\rho'''(2150)$ resonance to $e^+e^- \rightarrow K\bar{K}$ processes is favored prior to the $\rho''(1700)$ one by existing data in the charge and neutral kaon EM FFs.

What about π^0, η, η' :

They are **true neutral particles**

$$\Rightarrow$$
 their **elastic EM FFs**
 $F_{\pi^0}(t) = 0$
 $F_{\eta}(t) = 0$
 $F_{\eta'}(t) = 0$

i.e. these particles are **point-like** according to EM interactions !

However, one can define **nonzero single FF for** each $\gamma^* \rightarrow \gamma P$ transition by a parametrization of the matrix element of the EM current

$$J^{EM}_{\mu} = 2/3\bar{u}\gamma_{\mu}u - 1/3\bar{\gamma}_{\mu}d - 1/3\bar{s}\gamma_{\mu}s$$

< $P(p) \mid J^{EM}_{\mu} \mid 0 > = \varepsilon_{\mu\nu\alpha\beta}p^{\nu}\epsilon^{\alpha}k^{\beta}F_{\gamma P}(q^{2})$
 ϵ^{α} - the polarization vector of γ

 $\varepsilon_{\mu\nu\alpha\beta}$ - antisymmetric tensor

The **transition FF** is related with total cross sections $\sigma_{tot}(e^+e^- \to P\gamma) = \frac{\pi\alpha^2}{6}(1 - \frac{m_P^2}{t})^3 |F_{P\gamma}(t)|^2$ **giving experimental data** on $F_{\pi^0\gamma}(t), F_{\eta\gamma}(t)$ and $F_{\eta'\gamma}(t)$ in t > 0 region.

A straightforward calculation of $F_{P\gamma}(t)$ in QCD

impossible !

One has to construct sophisticated

phenomenological models.

In a construction of the U&A model - it is again suitable to split $F_{P\gamma}(t)$ into two terms depending on the isotopic character of the photon

 $F_{P\gamma}(t) = F_{P\gamma}^{I=0}(t) + F_{P\gamma}^{I=1}(t)$

 $F_{P\gamma}^{I=0}(t)$ - saturated by **isoscalar vector-mesons** $\omega, \phi, \omega', \phi'$ etc.

 $F_{P\gamma}^{I=1}(t)$ - saturated by **isovector vector-mesons** ρ, ρ', ρ'' etc. <u>QUESTION</u> - how many vector-meson resonances have to be taken into account?

It is prescribed by the existing data interval on the corresponding FF in t > 0 region.

The data on $\pi^0 \gamma$ transition FF allow to **consider all** 3 **ground state vector mesons:** $\rho(770), \omega(782), \phi(1020)$ and also $\omega'(1420)$ and $\rho'(1450)$, in order to construct automatically normalized U&A models.

NOTE:

With the aim of obtaining **comparable results**, the same number of resonances is considered also for η and η' .

Further:

- the **resonance parameters are fixed** at the TA-BLE values

- the normalization of FFs are

$$F_{P\gamma}(0) = \frac{2}{\alpha m_P} \sqrt{\frac{\Gamma(P \to \gamma\gamma)}{\pi m_P}}$$

where $\Gamma(P \rightarrow \gamma \gamma)$ are fixed at the **world averaged** values from TABLE

- the **analytic properties** of $F_{P\gamma}(t)$ - FFs are analytic in t - plane besides the cut from $t = m_{\pi^0}^2$ up to $+\infty$.

 \Rightarrow the U&A model of $F_{P\gamma}(t)$ takes the form

$$F_{P\gamma}^{I=0}[V(t)] = \left(\frac{1-V^2}{1-V_N^2}\right)^2 \times \quad (9)$$
$$\times \left\{\frac{1}{2}F_{P\gamma}(0)H(\omega') + [L(\omega) - H(\omega')]a_\omega + [H(\phi) - H(\omega')]a_\phi\right\}$$

$$F_{P\gamma}^{I=1}[W(t)] = \left(\frac{1-W^2}{1-W_N^2}\right)^2 \times$$
(10)
 $\times \{\frac{1}{2}F_{P\gamma}(0)H(\rho') + [L(\rho) - H(\rho')]a_{\rho}\}$

with

$$L(\omega) = \frac{(V_N - V_\omega)(V_N - V_\omega^*)(V_N - 1/V_\omega)(V_N - 1/V_\omega^*)}{(V - V_\omega)(V - V_\omega^*)(V - 1/V_\omega)(V - 1/V_\omega^*)}$$
$$H(i) = \frac{(V_N - V_i)(V_N - V_i^*)(V_N + V_i)(V_N + V_i^*)}{(V - V_i)(V - V_i^*)(V + V_i)(V + V_i^*)}, \quad i = \phi, \omega'$$

$$L(\rho) = \frac{(W_N - W_\rho)(W_N - W_\rho^*)(W_N - 1/W_\rho)(W_N - 1/W_\rho^*)}{(W - W_\rho)(W - W_\rho^*)(W - 1/W_\rho)(W - 1/W_\rho^*)}$$
$$H(\rho') = \frac{(W_N - W_{\rho'})(W_N - W_{\rho'}^*)(W_N + W_{\rho'})(W_N + W_{\rho'})}{(W - W_{\rho'})(W - W_{\rho'}^*)(W + W_{\rho'})(W + W_{\rho'}^*)}$$

and the normalization points

 $V(0) = V_N, \quad W(0) = W_N.$

The model depends on 5 free parameters $t_{in}^{s}, t_{in}^{v}, a_{j} = (f_{\gamma P j}/f_{j}), \quad j = \rho, \omega, \phi$ determined in an optimal description of existing data.

for
$$\pi^0$$
: see *Fig.*7
 $q_{in}^s = 5.5210 \pm 0.0084$ $q_{in}^v = 5.61220 \pm 0.1414$
 $a_\omega = 0.0063 \pm 0.0013$ $a_\rho = 0.0212 \pm 0.0006$
 $a_\phi = -.0004 \pm 0.0001$ $\chi^2/ndf = 121/75 = 1.61$

Figure 7: Prediction of $\pi^0\gamma$ transition EM FF behavior by U&A model.

for η : see Fig.8	
$q_{in}^s = 6.7104 \pm 0.0190$	$q_{in}^v = 5.5006 \pm 0.0632$
$a_{\omega} = 0.0002 \pm 0.0014$	$a_{\rho} = 0.0250 \pm 0.0013$
$a_{\phi} =0020 \pm 0.0003$	$\chi^2/ndf = 52/52 = 1.00$
for η' : see Fig.9	
$\frac{\text{for } \eta':}{q_{in}^s = 5.5366 \pm 0.0891}$	$q_{in}^v = 7.7554 \pm 0.0158$
for η' : see Fig.9 $q_{in}^s = 5.5366 \pm 0.0891$ $a_{\omega} =1134 \pm 0.0078$	$q_{in}^v = 7.7554 \pm 0.0158$ $a_\rho = 0.1241 \pm 0.0026$

Figure 8: Prediction of $\eta\gamma$ transition EM FF behavior by U&A model.

Figure 9: Prediction of $\eta'\gamma$ transition EM FF behavior by U&A model.

CONCLUSIONS

- We have investigated **EM structure of pseudoscalar mesons** to be described by corresponding EM FFs.
- Since there is no possibility to describe the latter in the framework of *QCD*, the universal *U&A* models have been elaborated.
- More or less successful description of all existing data on the whole complete nonet
 π⁻, π⁰, π⁺, K⁻, K⁰, K⁰, K⁺, η, η' has been achieved
 in space-like and time-like regions simultaneously.