Pole counting and pole classification

L. Y. $\text{Dai}^{(a)}$, X. G. $\text{Wang}^{(b)}$, H. Q. $\text{Zheng}^{(a)}$,

^(a) Department of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, P. R. China.

^(b) Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049, P.R.

China

We analyze $\pi\pi - K\bar{K}$ and $\pi\eta - K\bar{K}$ couple channel [1,1] matrix Padé amplitudes of $SU(3) \times SU(3)$ chiral perturbation theory. By fitting phase shift and inelasticity data, we determine pole positions in different channels $(f_0(980), a_0(980), f_0(600), K_0^*(800), K^*(892), \rho(770))$ and trace their N_c trajectories. We stress that a couple channel Breit–Wigner resonance should exhibit two poles on different Riemann sheets and meet each other on the real axis when $N_c = \infty$. Poles are hence classified using this criteria and we conclude that $K^*(892)$ and $\rho(770)$ are unambiguous Breit–Wigner resonances. For scalars the situation is much less clear. We find that $f_0(980)$ is a molecular state rather than a Breit–Wigner resonance, while $a_0(980)$, though behave oddly when varying N_c , does maintain a twin pole structure.

[1] L.Y. Dai, X.G. Wang, H.Q. Zheng, arXiv:1108.1451 [hep-ph]

E-mail:

zhenghq@pku.edu.cn