On the role of one pion exchange and heavy quark spin symmetry in heavy meson molecules

J. Nieves(a), M. Pavon Valderrama(a),(b),

(a) Instituto de Física Corpuscular (IFIC), Centro Mixto CSIC-Universidad de Valencia, Institutos de Investigación de Paterna, Aptd. 22085, E-460 71 Valencia, Spain
(b) Presenting author

In this contribution we want to discuss the role of the one pion exchange potential and heavy quark symmetry in heavy meson molecules such as the \(X(3872)\) \cite{1} or the recently discovered \(Z_b(10610)\) and \(Z_b(10650)\) \cite{2}. By using techniques developed in atomic physics for handling power-law singular potentials \cite{3,4}, which have been also successfully employed in nuclear physics \cite{5}, we determine the range of center-of-mass momenta for which the one pion exchange potential is perturbative \cite{6}. In this momentum range, the one pion exchange potential can be considered a subleading order correction, leaving at lowest order a very simple effective field theory consisting only on contact-range interactions (basically \(X\)-EFT \cite{7} in the case of the charm sector). In this regard, non-perturbative one pion exchange is only required in the bottom isoscalar sector, a case for which the resulting effective field theory has been analyzed at lowest order for \(B\bar{B}^*/B^*\bar{B}\) molecules in Ref. \cite{8}. We also explore the consequences of heavy quark spin symmetry within the previous effective field theory approaches in different scenarios \cite{9}.

6. M. Pavon Valderrama (in preparation)

E-mail: mpavon@ific.uv.es