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P. Bydžovský (Nuclear Physics Institute, ASCR, Řež near Prague,
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Motivation

We present results of the combined coupled-channel

analysis of data on isoscalar S-wave processes

ππ → ππ,KK, ηη and on decays J/ψ → φππ, φKK for

studying f0-mesons lying below 1.9 GeV. Note that as to

parameters of the scalar mesons, obtained from

experimental data in various analyses, and even the status

of some of the mesons, there is a considerable

disagreement (C.Amsler et al. (PDG), PL B 667 (2008) 1). As to

the first point, we pick out the f0(600)/σ-meson, f0(980)

and f0(1500). As to the second point, one might indicate a

situation related to the f0(1370) when, e.g., D. Bugg (Eur.

Phys.J. C52 (2007) 55; arXiv: 0710.4452 [hep-ex]) has indicated a

number of data requiring apparently the existence of the

f0(1370). These are the Crystal Barrel data on p̄p → ηηπ0

and on p̄p → 3π0 also the BES data on J/ψ → φπ+π−,

and in the GAMS data for π+π− → π0π0 at large |t|.



In works (W. Ochs, arXiv:1001.4486v1 [hep-ph]; P. Minkowski,

W. Ochs, EPJ C9 (1999) 283; hep-ph/0209225) one did not find

evidence for the existence of the f0(1370). In work

(Yu.S. Surovtsev et al, EPJ A15 (2002) 409) also the best

description of ππ → ππ,KK was obtained without the

f0(1370), and it was shown that the KK scattering length

is very sensitive to whether this state exists or not.

Note a situation with scalar states in the 1500-MeV

region. In our previous model-independent analyses of

ππ → ππKK, ηη, ηη′ (Yu.S.Surovtsev et al., IJMP A 24 (2009)

586), we saw the wide state f0(1500) whereas in works of

some other authors, analyzing mainly mesons production

and decay processes and cited in the PDG tables, the

rather narrow f0(1500) was obtained. We suggested that

the wide f0(1500), observed in the multi-channel ππ

scattering, indeed, is a superposition of two states, wide

and narrow. The latter is observed just in decays and

productions of mesons. Here we verify also this suggestion.



In view of indicated circumstances, related to parameters

and status of scalar mesons, there are the known problems

as to determining their QCD nature and assignment to

the quark-model configurations in spite of a big amount of

work devoted these problems (see, e.g., V.V.Anisovich, IJMP

A 21 (2006) 3615 and references therein).

Here we applied to analyses of experimental data our

model-independent method based only on the first

principles (analyticity and unitarity) (D.Krupa,

V.Meshcheryakov, Yu.Surovtsev, NC A 109 (1996) 281 – KMS, 96).

That approach permits us to omit theoretical prejudice in

extracting the resonance parameters. Considering the

obtained arrangement of resonance poles on the

Riemann-surface sheets, obtained coupling constants with

channels and resonance masses, we draw definite

conclusions about nature of the investigated states.



The 3-coupled-channel formalism in

model-independent approach

Our model-independent method which essentially utilizes

an uniformizing variable can be used only for the

2-channel case and under some conditions for the

3-channel one. Only in these cases we obtain a simple

symmetric (easily interpreted) picture of the resonance

poles and zeros of the S-matrix on the uniformization

plane. The 3-channel S-matrix is determined on the

8-sheeted Riemann surface. The matrix elements Sij ,

where i, j = 1, 2, 3 denote channels, have the right-hand

cuts along the real axis of the s complex plane (s is the

invariant total energy squared), starting with the channel

thresholds si (i = 1, 2, 3), and the left-hand cuts.



The Riemann-surface sheets are numbered according to

the signs of analytic continuations of the square roots√
s− si (i = 1, 2, 3) as follows:

I II III IV V VI VII VIII

Im
√
s− s1 + − − + + − − +

Im
√
s− s2 + + − − − − + +

Im
√
s− s3 + + + + − − − −

The resonance representations on the Riemann surface are

obtained with the help of formulas from (KMS, 96),

expressing analytic continuations of the S-matrix elements

to all sheets in terms of those on sheet I that have only the

resonances zeros (beyond the real axis), at least, around

the physical region. Then, starting from the resonance

zeros on sheet I, one can obtain an arrangement of poles

and zeros of resonance on the whole Riemann surface.



Process I II III IV V VI VII VIII

1 → 1 S11
1

S11

S22
D33

D33
S22

detS
D11

D11
det S

S33
D22

D22
S33

1 → 2 S12
iS12
S11

−S12
D33

iS12
S22

iD12
D11

−D12
det S

iD12
D22

D12
S33

2 → 2 S22
D33
S11

S11
D33

1

S22

S33
D11

D22
det S

det S
D22

D11
S33

1 → 3 S13
iS13
S11

−iD13
D33

−D13
S22

−iD13
D11

D13
det S

−S13
D22

iS13
S33

2 → 3 S23
D23
S11

iD23
D33

iS23
S22

−S23
D11

−D23
det S

iD23
D22

iS23
S33

3 → 3 S33
D22
S11

det S
D33

D11
S22

S22
D11

D33
det S

S11
D22

1

S33

In Table, the superscript I is omitted to simplify the

notation, detS is the determinant of the 3 × 3 S-matrix on

sheet I, Dαβ is the minor of the element Sαβ, that is,

D11 = S22S33 − S2
23, D22 = S11S33 − S2

13,

D33 = S11S22 − S2
12, D12 = S12S33 − S13S23,

D23 = S11S23 − S12S13, etc.



In the 3-channel case, we obtain 7 types of resonances

corresponding to 7 possible situations when there are

resonance zeros on sheet I only in S11 – (a); S22 – (b);

S33 – (c); S11 and S22 – (d); S22 and S33 – (e); S11

and S33 – (f); S11, S22, and S33 – (g).

The resonance of every type is represented by the pair of

complex-conjugate clusters (of poles and zeros on the

Riemann surface).

A necessary and sufficient condition for existence of the

multi-channel resonance is its representation by one of the

types of pole clusters.

Whereas cases (a), (b) and (c) can be simply related to

the resonance representation by Breit-Wigner forms, cases

(d), (e), (f) and (g) practically are lost at the

Breit-Wigner description.



The cluster type is related to the nature of state. E.g., if

we consider the ππ, KK and ηη channels, then a

resonance, coupled relatively more strongly to the ππ

channel than to the KK and ηη ones is described by the

cluster of type (a). In the opposite case, it is represented

by the cluster of type (e) (say, the state with the

dominant ss̄ component). The glueball must be

represented by the cluster of type (g) as a necessary

condition for the ideal case.

From formulas of the analytic continuations, we conclude

that masses and total widths of resonances must be

calculated from the pole positions on sheets II, IV and

VIII because the analytic continuations only onto these

sheets have the forms ∝ 1/SI
11, ∝ 1/SI

22 and ∝ 1/SI
33,

respectively, i.e., the pole positions of resonances only on

these sheets are at the same points of the complex-energy

plane, as the resonance zeros on the physical sheet, and

are not shifted due to the coupling of channels.



We can distinguish, in a model-independent way, a bound

state of colourless particles (e.g., KK molecule) and a qq̄

bound state. Just as in the 1-channel case, the existence

of the particle bound-state means the presence of a pole

on the real axis under the threshold on the physical sheet,

so in the 2-channel case, the existence of the bound-state

in channel 2 (KK molecule) that, however, can decay into

channel 1 (ππ decay), would imply the presence of the

pair of complex conjugate poles on sheet II under the

second-channel threshold without the corresponding

shifted pair of poles on sheet III.

In the 3-channel case, the bound state in channel 3 (ηη)

that, however, can decay into channels 1 (ππ decay) and 2

(KK decay), is represented by the pair of complex

conjugate poles on sheet II and by the pair of shifted poles

on sheet III under the ηη threshold without the

corresponding poles on sheets VI and VII.



According to this test (D.Morgan, M.R.Pennington, PR D 48

(1993) 1185; KMS, 96), earlier in (KMS, 96), we rejected

interpretation of the f0(980) as the KK molecule because

this state is represented by the cluster of type (a) in the

2-channel analysis of processes ππ → ππ,KK and,

therefore, does not satisfy the necessary condition to be

the KK molecule.



We use the Le Couteur-Newton relations (K.J.LeCouteur,

Proc.Roy.Soc. A 256 (1960) 115; R.G.Newton, J.Math.Phys. 2 (1961)

188; M.Kato, Ann.Phys. 31 (1965) 130). They express the

S-matrix elements of all coupled processes in terms of the

Jost matrix determinant d(
√
s− s1, · · · ,√s− sn) that is a

real analytic function with the only square-root

branch-points at
√
s− si = 0.

The important branch points, corresponding to the

thresholds of the coupled channels and to the crossing

ones, are taken into account in the proper uniformizing

variable. Here we used a new uniformizing variable, in

which we neglect the lowest ππ-threshold branch-point

and take into account the threshold branch-points related

to two remaining channels and the left-hand branch-point

at s = 0:

w =

√

(s− s2)s3 +
√

(s− s3)s2
√

s(s3 − s2)
.

s2 = m2
K , s3 = 4m2

η.
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On the w-plane, the Le Couteur-Newton relations are

S11 =
d∗(−w∗)

d(w)
, S22 =

d(−w−1)

d(w)
, S33 =

d(w−1)

d(w)
,

S11S22−S2
12 =

d∗(w∗−1)

d(w)
, S11S33−S2

13 =
d∗(−w∗−1)

d(w)
.

d = dBdres, dres(w) = w−M
2

M
∏

r=1

(w + w∗
r)

M is the number of resonance zeros.

dB = exp[−i(a+

3
∑

n=1

√
s− sn

2mn

(αn + iβn))],

αn = an1 + anσ
s− sσ

sσ
θ(s− sσ) + anv

s− sv

sv
θ(s− sv),

βn = bn1 + bnσ
s− sσ

sσ
θ(s− sσ) + bnv

s− sv

sv
θ(s− sv).

sσ is the σσ threshold; sv is the combined threshold of the

ηη′, ρρ, ωω channels.



Analysis of the data on isoscalar S-wave

processes ππ → ππ,KK, ηη and on decays

J/ψ → φππ, φKK

To the combined analysis of data on processes

ππ → ππ,KK, ηη, ηη′,

we added also data from Mark III (W.Lockman, Hadron’89,

Proceedings, p.109) and DM2 (A.Falvard et al., PR D38 (1988) 2706)

on decays J/ψ → φππ, φKK. Formalism for calculating

di-meson mass distributions of these decays can be found

in Refs. (D.Morgan, M.R.Pennington, PR D 48 (1993) 1185; PR D

48 (1993) 5422; B.S.Zou, D.V.Bugg, PR D 50 (1994) 591). There is

assumed that pairs of pseudo-scalar mesons of final states

have I = J = 0 and only they undergo strong interactions,

and the φ meson acts as a spectator.



For the ππ scattering, the data from the threshold to 1.89

GeV are taken from (B.Hyams et al., NP B 64 (1973) 134; 100

(1975) 205 (1975); A.Zylbersztejn et al., PL B 38 (1972) 457;

P.Sonderegger, P.Bonamy, in Proc. 5th Intern. Conf. on Elem. Part.,

Lund, 1969, paper 372; J.R.Bensinger et al., PL B 36 (1971) 134;

J.P.Baton et al., PL B 33 (1970) 525, 528; P.Baillon et al., PL B 38

(1972) 555; L.Rosselet et al., PR D 15 (1977) 574; A.A.Kartamyshev et

al., Pis’ma v ZhETF 25 (1977) 68; A.A. Bel’kov et al., Pis’ma v ZhETF

29 (1979) 652). For ππ → KK, practically all the accessible

data are used (W.Wetzel et al., NP B 115 (1976) 208;

V.A.Polychronakos et al., PR D 19 (1979) 1317; P.Estabrooks, PR D 19

(1979) 2678 ; D.Cohen et al., PR D 22 (1980) 2595; G.Costa et al.,

NP B 175 (1980) 402; A.Etkin et al., PR D 25 (1982) 1786).

For ππ → ηη, we used data for |S13|2 from the threshold

to 1.72 GeV (F.Binon et al., NC A 78 (1983) 313).



The amplitudes for J/ψ → φππ, φKK decays are related

with the scattering amplitudes Tij i, j = 1 − ππ, 2 −KK

as follows

F (J/ψ → φππ) =

√

2

3
[c1(s)T11 + c2(s)T21],

F (J/ψ → φKK) =

√

1

2
[c1(s)T12 + c2(s)T22]

where ci(s) are functions of couplings of the J/ψ to

channel i.

ci = γi0 + γi1s

with γi0 and γi1 free parameters.

N |F |2√
s− si

√

(m2
ψ − (

√
s−mφ)2)(m

2
ψ − (

√
s+mφ)2

gives the di-meson mass distributions. N (normalization to

experiment) is 0.73 for Mark III and 0.28 for DM2.

γ10, γ11, γ20, γ21 = 1.6148, 1.3169,−1.0962,−1.64.



We supposed that in the 1500-MeV region there are two

resonances. The f0(600) is described by the cluster of type

(a); f0(1370), type (b); f0(1500), type (c); f ′
0(1500), type

(g); f0(1710), type (b); the f0(980) is represented only by

the pole on sheet II and shifted pole on sheet III in both

variants.

Satisfactory combined description of all analyzed processes

the total χ2/NDF = 408.166/(364 − 51) ≈ 1.30.

One can see (R. Kamiński et al., Z.Phys. C74 (1997) 79) that the

data for ππ scattering below 1 GeV admit two solutions

for the phase shift: ”up” and ”down”. The above solution

is ”down”.

The ”up” solution gives practically the same result: The

total χ2/NDF = 400.249/(364 − 51) ≈ 1.27.

We considered also a possibility of description without the

f0(1370): The total χ2/NDF = 397.609/(364 − 47) ≈ 1.25.



T res =
√
s Γel/(m

2
res − s− i

√
s Γtot)

”down” ”up” ”up” without f0(1370)

State mres[MeV] Γtot [MeV] mres[MeV] Γtot [MeV] mres[MeV] Γtot [MeV]

f0(600) 771.1±15 1032.0±26 768.5±9.8 521.6±20 768.5±9.2 521.5±20

f0(980) 1008.2±4 75.4±12 1008.0±3 75.0±7 1008.3±3 75.0±7

f0(1370) 1365.1±16 339.6 ±30 1383.7±17 344.6±27 – –

f0(1500) 1500.2±14 114.2±22 1499.6±13 115.8±21 1499.5±11 115.7±20

f′
0
(1500) 1538.3±14 662.9±26 1538.0±12.5 662.2±25 1538.4±12 663.0± 25

f0(1710) 1740.3±15 215.0±32 1741.5±14 257.2±28 1741.6±12 225.2±22

As to a description, it is impossible to prefer any of these

solutions. However, we select the ”up” solution with the

f0(1370), mainly because here the parameters of the

f0(600) remarkably accord with prediction (mσ ≈ mρ and

Γtot ≈ 600 MeV) on the basis of mended symmetry by

Weinberg (S.Weinberg, PRL 65 (1990) 1177). Existence of the

f0(1370) is for now a standard point of view.



The pole clusters for resonances on the complex energy plane√
s. The poles on sheets IV, VI, VIII and V, corresponding to

the f ′
0(1500), are of the 2nd and 3rd order, respectively (this is

an approximation).
√
sr=Er−iΓr/2.

Sheet II III IV V VI VII VIII

f0(600) Er 722.9±15 766.4±15 772.7±15 729.2±15

Γr/2 260.8±19 260.8±19 260.8±19 260.8±19

f0(980) Er 1007.3±4 969.5±9

Γr/2 37.5±6.6 53.6±10.7

f0(1370) Er 1372.9±19 1372.9±19 1372.9±19 1372.9±19

Γr/2 171.7±17 172.3±17 253.1±17 252.5±17

f0(1500) Er 1498.5±14 1498.5±14 1498.5±14 1498.5±14

Γr/2 70.1±13 57.9±13 45.7±13 57.9±13

f′
0
(1500) Er 1502.4±18 1502.8±16 1502.4±18 1497.5±14 1512.5±15 1502.8±20 1502.4±18

Γr/2 331.8±16 136.3±10 224.4±16 139.9±14 184.5±17 98.8±11 331.4±16

f0(1710) Er 1736.7±17 1736.7±17 1736.7±17 1736.7±17

Γr/2 110.6±23 128.6±23 288.0±23 270.0±23

a = 0.0, a11 = 0.2806, a1σ = −0.0131, a1v = 0, b11 = b1σ = 0,

b1v = 0.0504, a21 = −0.9792, a2σ = −0.416, a2v = −6.644,

b21 = 0.0289, b2σ = 0, b2v = 6.955, b31 = 0.6417, b3σ = 0.6104,

b2v = 0; sσ = 1.638 GeV2, sv = 2.085 GeV2.



The result for the f0(980): This state lies slightly above

the KK threshold and is described by the pole on sheet II

and by the shifted pole on sheet III under the ηη

threshold without the corresponding (for standard

clusters) poles on sheets VI and VII. This corresponds,

e.g., to the description of the ηη bound state.

The f0(1370) and f0(1710) are described by the clusters

pointing up to the dominant ss̄ component of these states.

The cluster of type (g) of f ′
0(1500) tells us on the

approximately equal coupling constants of this state with

the ππ, KK and ηη systems. This points up to its glueball

nature (C.Amsler, F.E.Close, PR D 53 (1996) 295).
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Discussion and conclusions

• In the combined model-independent analysis of data

on the ππ → ππ,KK, ηη processes in the

IGJPC = 0+0++ channel and on the

J/ψ → φππ, φKK decays, an additional confirmation

of the σ-meson with mass mσ ≈ mρ is obtained. This

value remarkably accords with prediction on the basis

of mended symmetry by Weinberg (S.Weinberg, PRL 65

(1990) 1177). For Γtot, there are obtained two values,

equal to about 0.5 GeV and 1 GeV, corresponding two

possible solutions for the ππ-scattering phase shift

below 1 GeV – ”up” and ”down”, respectively.

• An indication for f0(980) (mres = 1008 MeV, Γtot = 75

MeV) is obtained to be, e.g., the bound ηη state.



• The f0(1370) and f0(1710) have the dominant ss̄

component. Conclusion about the f0(1370) quit agrees

with the one of work of Crystal Barrel Collaboration

(C.Amsler et al., PL B 355 (1995) 425) where the f0(1370) is

identified as ηη resonance in the π0ηη final state of the

p̄p annihilation at rest. Conclusion about the f0(1710)

is quite consistent with the experimental facts that

this state is observed in γγ → KSKS (S.Braccini, Frascati

Phys. Series XV, 53 (1999)) and not observed in

γγ → π+π− (R.Barate et al., PL B 472, 189 (2000)).

• In the 1500-MeV region, indeed, there are two states:

the f0(1500) (mres ≈ 1500 MeV, Γtot ≈ 116 MeV) and

the f ′
0(1500) (mres ≈ 1540 MeV, Γtot ≈ 660 MeV).

The f ′
0(1500) is interpreted as the glueball on the basis

of indications about its couplings with the considered

channels. Its biggest width among enclosing states tells

also in favour of its glueball nature (V.V.Anisovich et al.,

NP Proc.Suppl. A56 (1997) 270).



• We propose a following assignment of the scalar

mesons below 1.9 GeV to lower nonets, when

excluding the f0(980) as the non-qq̄ state. The lowest

nonet: the isovector a0(980), the isodoublet K∗
0(930),

and f0(600) and f0(1370) as mixtures of the 8th

component of octet and the SU(3) singlet. The

Gell-Mann–Okubo (GM-O) formula

3m2
f8

= 4m2
K∗

0
−m2

a0

gives mf8 = 910 MeV.

In relation for masses of nonet

mσ +mf0(1370) = 2mK∗
0

the left-hand side is by about 16 % bigger than the

right-hand one.



• For the next nonet we find: a0(1450), K∗
0(1450), and

f0(1500) and f0(1710). From the GM-O

formula, mf8 ≈ 1453 MeV. In formula

mf0(1500) +mf0(1710) = 2mK∗
0 (1450)

the left-hand side is by about 12 % bigger than the

right-hand one.

This assignment moves off a number of questions,

stood earlier, and does not put the new ones. The

mass formulas indicate to non-simple mixing scheme.

The breaking of 2nd relations tells us that the

σ−f0(1370) and f0(1500)−f0(1710) systems get

additional contributions absent in the K∗
0(900) and

K∗
0(1450), respectively. A search of the adequate

mixing scheme is complicated by the circumstance that

here there is also a remainder chiral symmetry,

though, on the other hand, this permits one to predict

correctly, e.g., the σ-meson mass.



Appendices

There is a number of properties of the scalar mesons,

which do not allow one satisfactorily to make up the

lowest nonet. The main of them is inaccordance of the

approximately equal masses of the f0(980) and a0(980)

and the found ss̄ dominance in the wave function of the

f0(980). If these states are in the same nonet, the f0(980)

must be heavier than a0(980) for 250-300 MeV, because a

difference of masses of s- and u-quarks is 120-150 MeV.

We proposed our way to solve this problem.

The discovery of the κ-doublet (if it will be confirmed)

moves off some more a number of problems.


