Coupled-channels Faddeev calculation of K^-d scattering length

N.V. Shevchenko Nuclear Physics Institute, Řež, Czech Republic Antikaon-nuclear and atomic states – interesting exotic objects

Antikaon-nucleon interaction is the basic for their investigation

Questions/problems: •Old or controversial experimental data on K^-p • $\Lambda(1405)$ resonance question (bound state for \overline{KN} and a resonance for $\pi\Sigma$? two resonances?)

It is not possible to give a preference to one- or two-pole structure due to imprecise two-body experimental data => use the two versions in three-body calculation.

SIDDHARTA experiment (kaonic deuterium atom): the results of the experiment can be connected with the strong scattering length of $K^- d$ system

Three-body coupled-channels equations

Faddeev equations in Alt - Grassberger - Sandhas form :

 $U_{11} = T_2 G_0 U_{21} + T_3 G_0 U_{31}$ $U_{21} = G_0^{-1} + T_1 G_0 U_{11} + T_3 G_0 U_{31}$ $U_{31} = G_0^{-1} + T_1 G_0 U_{11} + T_2 G_0 U_{21}$

define unknown operators U_{ij}

 $U_{11}: \qquad 1+(23) \to 1+(23)$ $U_{21}: \qquad 1+(23) \to 2+(31)$ $U_{31}: \qquad 1+(23) \to 3+(12)$

 $\overline{K}N$ interaction strongly coupled with $\pi\Sigma$ via $\Lambda(1405)$ resonance $\Rightarrow \pi\Sigma$ channel included directly. Particle channels (α): $\alpha = 1: |\overline{K}_1 N_2 N_3\rangle, \quad \alpha = 2: |\pi_1 \Sigma_2 N_3\rangle, \quad \alpha = 3: |\pi_1 N_2 \Sigma_3\rangle$

i, *j* - usual Faddeev indexes α, β - channel indexes

Two-body *T*-matrices, $T_i^{\alpha\beta}$: $T_1 = \begin{pmatrix} T_1^{NN} & 0 & 0 \\ 0 & T_1^{\Sigma N} & 0 \\ 0 & 0 & T_1^{\Sigma N} \end{pmatrix}, T_2 = \begin{pmatrix} T_2^{KK} & 0 & T_2^{K\pi} \\ 0 & T_2^{\pi N} & 0 \\ T_2^{\pi K} & 0 & T_2^{\pi\pi} \end{pmatrix}, T_3 = \begin{pmatrix} T_3^{KK} & T_3^{K\pi} & 0 \\ T_3^{\pi K} & T_3^{\pi\pi} & 0 \\ 0 & 0 & T_3^{\pi N} \end{pmatrix}$ $T^{NN}, T^{\Sigma N}, \text{ and } T^{\pi N} \text{ are one-channel (usual) } T \text{-matrices;}$ $T^{KK} : \bar{K}N \to \bar{K}N, \quad T^{K\pi} : \pi\Sigma \to \bar{K}N,$ $T^{\pi K} : \bar{K}N \to \pi\Sigma, \quad T^{\pi\pi} : \pi\Sigma \to \pi\Sigma \quad \text{- elements of 2-channel } T^{\bar{K}N-\pi\Sigma}$

Free Green functions $G_0^{\alpha\beta} = \delta_{\alpha\beta} G_0^{\alpha}$, transition operators $U_{ij}^{\alpha\beta}$

Quantum numbers of $KNN - \pi \Sigma N$ system $(K^{-}d)$:

spin S = 1, orbital momentum L = 0, isospin I = 1/2Two identical nucleons - antisymmetrization, finally: system of 10 integral equations (two-term *NN* potential)

Coupled-channels $\overline{K}N - \pi\Sigma$ interaction:

J. Révai, N.V. Shevchenko, Phys. Rev. C 79 (2009) 035202; new fits

 \overline{K} N is strongly coupled with πΣ channel through Λ(1405) resonance PDG: $E_{\Lambda} = 1406.5 - i$ 25.0 MeV, I = 0

Usual assuption:

a resonance in $I = 0 \pi \Sigma$ and a quasi-bound state in $I = 0 \overline{KN}$ channel Alternative version: $\Lambda(1405)$ is an effect of two close poles

=> phenomenological potential with one- and two-pole structure of $\Lambda(1405)$ resonance.

Isospin-breaking effects:

1. Direct inclusion of *Coulomb interaction* (kaonic hydrogen)

2. Using of the <u>physical masses</u>: $m_{K^{-}}, m_{\overline{K}^{0}}, m_{p}, m_{n}$ instead of $m_{\overline{K}}, m_{N}$

Existing experimental data:

- Scattering data:
 - Cross-sections of $K^- p \to K^- p$ and $K^- p \to MB$ reactions,
 - Threshold branching ratios γ , R_c , and R_n $D.N. Tovee \ et \ al., Nucl. Phys. B33(1971)493,$ $R.J. Nowak \ et \ al., Nucl. Phys. B139(1978)61$ Without directly included $\pi \Lambda$ channel: $R_{\pi\Sigma} = \frac{R_c}{1 - R_c(1 - R_c)}$
- Strong interaction shift and width of the K⁻p atom 1s level state <u>KEK</u> (*M. Iwasaki et al.*, Phys. Rev. Lett. 78 (1997) 3067): $\Delta E_{1s}^{KEK} = -323 \pm 63 \pm 11 \text{ eV}, \ \Gamma_{1s}^{KEK} = 407 \pm 208 \pm 100 \text{ eV}$

DEAR (*G. Beer et al.*, Phys. Rev. Lett. 94 (2005) 212302):
$$\Delta E_{1s}^{DEAR} = -193 \pm 37 \pm 6 \text{ eV}, \quad \Gamma_{1s}^{DEAR} = 249 \pm 111 \pm 30 \text{ eV}$$

<u>Strong part</u> of the total potential $V_s + V_c$: $V_I^{\alpha\beta}(\vec{k}^{\,\alpha}, \vec{k}^{\,\beta}) = g_I^{\,\alpha}(\vec{k}^{\,\alpha}) \,\lambda_1^{\alpha\beta} \,g_I^{\,\beta}(\vec{k}^{\,\beta}),$ $\alpha, \beta = K(\overline{K}N \text{ channel}) \text{ or } \pi(\pi\Sigma \text{ channel}); \quad I = 0 \text{ or } 1;$

•1-pole $\Lambda(1405)$:

$$g_{I,1pole}^{\alpha}(k^{\alpha}) = \frac{1}{(k^{\alpha})^2 + (\beta_{I}^{\alpha})^2} \qquad \text{for } \alpha = K \text{ or } \pi$$

• 2 - pole $\Lambda(1405)$:

$$g_{I,1pole}^{\alpha}(k^{\alpha}) = \frac{1}{(k^{\alpha})^{2} + (\beta_{I}^{\alpha})^{2}} \qquad \text{for } \alpha = K$$
$$g_{I,2pole}^{\alpha}(k^{\alpha}) = \frac{1}{(k^{\alpha})^{2} + (\beta_{I}^{\alpha})^{2}} + \frac{s(\beta_{I}^{\alpha})^{2}}{[(k^{\alpha})^{2} + (\beta_{I}^{\alpha})^{2}]^{2}} \qquad \text{for } \alpha = \pi$$

Comparison with experimental data, cross-sections:

one-pole potential: with physical masses (blue solid line) with averaged masses (blue dashed line)

two-pole potential: with physical masses (red solid line) with averaged masses (red dashed line)

Experimental and theoretical 1s K⁻p level shift and width:

<u>One-pole potential</u>: physical masses (blue filled circle) averaged masses (blue half-empty circle) <u>Two-pole potential</u>: physical masses (red filled circle)

averaged masses (red half-empty circle)

Pole positions

"1-pole"	"2-pole"
1414 – <i>i</i> 50 MeV	1412 – <i>i</i> 33 MeV 1380 – <i>i</i> 105 MeV

<u>Two-term NN potential</u> P. Doleschall, private communication, 2009

$$V_{NN} = \sum_{i=1}^{2} |g_i\rangle \lambda_i \langle g_i| \rightarrow$$
$$T_{NN} = \sum_{i,j=1}^{2} |g_i\rangle \tau_{ij} \langle g_j|$$

Reproduces:

Argonne V18 NN phase shifts (with sign change!),

$$a^{A}(np) = -5.402 \text{ fm}, r_{eff}^{A}(np) = 1.754 \text{ fm},$$

 $a^{B}(np) = -5.413 \text{ fm}, r_{eff}^{B}(np) = 1.760 \text{ fm},$
and $E_{deu} = -2.2246 \text{ MeV}.$

Version A:
$$g_i^A(k) = \sum_{m=1}^2 \frac{\gamma_{im}^A}{(\beta_{im}^A)^2 + k^2}, \ i = 1, 2$$

Version B: $g_1^B(k) = \sum_{m=1}^3 \frac{\gamma_{1m}^B}{(\beta_{1m}^B)^2 + k^2}, \ g_2^B(k) = \sum_{m=1}^2 \frac{\gamma_{2m}^B}{(\beta_{2m}^B)^2 + k^2}$

PEST NN potential

H. Zankel, W. Plessas, and J. Haidenbauer, Phys. Rev. C28 (1983) 538

Separable isospin - dependent *T* - matrices : $T_{i,I}^{\alpha\beta} = \left| g_{i,I}^{\alpha} \right\rangle \tau_{i,I}^{\alpha\beta} \left\langle g_{i,I}^{\beta} \right|$

 $T_I^{NN}(k,k';z)$ corresponds to

$$V_{I}^{NN}(k,k') = -g_{I}^{NN}(k)g_{I}^{NN}(k') \quad \text{with} \quad g_{I}^{NN}(k) = \frac{1}{2\sqrt{\pi}} \sum_{i=1}^{6} \frac{c_{i,I}^{NN}}{k^{2} + (\beta_{i,I}^{NN})^{2}}$$

A separabelization of a Paris potential; I = 0 or 1

Gives:

$$E_{deuteron} = -2.2249 \text{ MeV},$$

 $a({}^{3}S_{1}) = -5.422 \text{ fm},$
 $a({}^{1}S_{0}) = 17.534 \text{ fm},$

$\Sigma N(-\Lambda N)$ interaction

 $T_I^{\Sigma N}(k,k';z)$ corresponds to

$$V_{I}^{\Sigma N}(k,k') = \lambda_{I}^{\Sigma N} g_{I}^{\Sigma N}(k) g_{I}^{\Sigma N}(k')$$

with $g_{I}^{\Sigma N}(k) = \frac{1}{k^{2} + (\beta_{I}^{\Sigma N})^{2}}$

All parameters were <u>fitted</u> to reproduce experimental cross-sections

<u>I=3/2</u>

Real parameters, one-channel case

<u>I=1/2</u>

- 1. Two-channel $\Sigma N \Lambda N$ potential, real parameters
- 2. One-channel ΣN potential, complex strength parameter

Results 2,0 \oplus [KOR] 1,8 1,6 [BFMS] lm a _{K^{, d}, fm} 1,4 1,2 [G] □ ⊠ 2-pole Λ(1405) [TDD] [TGE] \diamond 1,0 [D] 1-pole A(1405) 0,8 -1,8 -1,6 -1,4 -1,2 -1,0 -0,8 Re a _{κ' d}, fm

Comparison with other calculations.

Full calculation with 1-pole (blue circle) and 2-pole (red circle) version of $\overline{KN} - \pi \Sigma$ interaction. Doleschall's *NN*, version B is used.

Dependence of the results on NN interaction: 1-pole (blue) and 2-pole (red) versions

Comparison with approximated results: one-channel Faddeev with optical, complex KN; and FSA (Fixed Scatterer

Conclusions:

• Coupled-channels Faddeev-type (AGS) calculation of K^-d scattering length with one- and two-pole $\overline{KN} - \pi\Sigma$:

 $a_{1-pole}(K^{-}d) = -1.38 + i \ 0.99 \ \text{fm},$ $a_{2-pole}(K^{-}d) = -1.59 + i \ 1.19 \ \text{fm}.$

- Dependence of the results on the *NN* potential is weak
- Calculations with commonly used approximations: - one-channel Faddeev calculation with optical \overline{KN} potential,
 - one-channel Faddeev calculation with complex KN potential,
 - Fixed Scatterer Approximation.

FSA ("FCA") is improper for $K^- d$ system