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important mass generating mechanism for visible matter in the

Universe. Higgs mechanism is irrelevant to light-quarks.

Running of quark mass entails that calculations at even

modest Q2 require a Poincaré-covariant approach. Covariance

requires existence of quark orbital angular momentum in

hadron’s rest-frame wave function.
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hadrons.

E.g., one problem: DCSB - an established keystone of
low-energy QCD and the origin of constituent-quark
masses - has not yet been realised in the light-front
formulation.

Resolution
– So-called vacuum condensates can be understood as a
property of hadrons themselves, which is expressed, for
example, in their Bethe-Salpeter or light-front wavefunctions.
– DCSB obtained via coherent contribution from countable
infinity of higher Fock-state components in LF-wavefunction.

Brodsky, Roberts, Shrock, Tandy – arXiv:1005.4610 [nucl-th].
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Quark and Gluon Confinement
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cannot liberate an individual quark or gluon

Dynamical Chiral Symmetry Breaking

Very unnatural pattern of bound state masses

e.g., Lagrangian (pQCD) quark mass is small but . . .

no degeneracy between JP=+ and JP=−

Neither of these phenomena is apparent in QCD’s

Lagrangian yet they are the dominant determining

characteristics of real-world QCD.

QCD – Complex behaviour

arises from apparently simple rules
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What is the light-quark
Long-Range Potential?

Potential between static (infinitely heavy) quarks
measured in simulations of lattice-QCD is not related
in any known way to the light-quark interaction.
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This function may depend on the scheme chosen to

renormalise the quantum field theory but it is unique

within a given scheme.

Of course, the behaviour of the β-function on the

perturbative domain is well known.

This is a well-posed problem whose solution is an elemental

goal of modern hadron physics.
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Hence, comparison between computations and

observations of, e.g.,

hadron mass spectrum;

elastic and transition form factors
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Enabled proof or exact results in QCD:

e.g., BRST – arXiv:1005.4610 [nucl-th]; and . . .
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M (µ)
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TH ,
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}]

= mq1+mq2

• Sum of constituents’ current-quark masses

• e.g., TK+
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λ4 + iλ5
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q
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2tr

{

(
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}

• Pseudovector projection of BS wave function at x = 0

• Pseudoscalar meson’s leptonic decay constant
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H

, Independent of mq

Hence m2
H =

−〈q̄q〉0ζ
(f0

H)2
mq . . . GMOR relation, a corollary

Heavy-quark + light-quark

⇒ fH ∝ 1
√

mH
and ρH

ζ ∝ √
mH

Hence, mH ∝ mq

. . . QCD Proof of Potential Model result
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m2
πn 6=0

> m2
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= 0, in chiral limit
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ALL pseudoscalar mesons except π(140) in chiral limit

Dynamical Chiral Symmetry Breaking

– Goldstone’s Theorem –

impacts upon every pseudoscalar meson
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When we first heard about [this result] our first reaction was a
combination of “that is remarkable” and “unbelievable”.

CLEO: τ → π(1300) + ντ

⇒ fπ1
< 8.4 MeV

Diehl & Hiller
he-ph/0105194

Lattice-QCD check:
163 × 32,
a ∼ 0.1 fm,
two-flavour, unquenched

⇒ fπ1

fπ

= 0.078 (93)
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CLEO: τ → π(1300) + ντ

⇒ fπ1
< 8.4 MeV

Diehl & Hiller
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Lattice-QCD check:
163 × 32,
a ∼ 0.1 fm,
two-flavour, unquenched

⇒ fπ1

fπ

= 0.078 (93)

Full ALPHA formulation is required to see suppression, because
PCAC relation is at the heart of the conditions imposed for
improvement (determining coefficients of irrelevant operators)Craig Roberts – Impact of DCSB on meson structure and interactions
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he-ph/0105194

Lattice-QCD check:
163 × 32,
a ∼ 0.1 fm,
two-flavour, unquenched

⇒ fπ1

fπ

= 0.078 (93)

The suppression of fπ1
is a useful benchmark that can be used to

tune and validate lattice QCD techniques that try to determine the
properties of excited states mesons.Craig Roberts – Impact of DCSB on meson structure and interactions
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Charting the Interaction
between light-quarks

Through DSEs the pointwise behaviour of the β-function

determines pattern of chiral symmetry breaking

DSEs connect β-function to experimental observables.

Hence, comparison between computations and

observations can be used to chart β-function’s long-range

behaviour

To realise this goal, a nonperturbative symmetry-preserving

DSE truncation is necessary

Steady quantitative progress is being made with a

scheme that is systematically improvable

(See nucl-th/9602012 and references thereto)

Enabled proof or exact results in QCD,

as we’ve just seen
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Through DSEs the pointwise behaviour of the β-function

determines pattern of chiral symmetry breaking

DSEs connect β-function to experimental observables.

Hence, comparison between computations and

observations can be used to chart β-function’s long-range

behaviour

To realise this goal, a nonperturbative symmetry-preserving

DSE truncation is necessary

On other hand, at present significant qualitative

advances possible with symmetry-preserving kernel

Ansätze that express important additional

nonperturbative effects – M(p2) – difficult/impossible to

capture in any finite sum of contributions
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Mass from nothing.

In QCD a quark’s effective mass
depends on its momentum. The
function describing this can be
calculated and is depicted here.
Numerical simulations of lattice
QCD (data, at two different bare
masses) have confirmed model
predictions (solid curves) that the
vast bulk of the constituent mass
of a light quark comes from a
cloud of gluons that are dragged
along by the quark as it
propagates. In this way, a quark
that appears to be absolutely
massless at high energies
(m = 0, red curve) acquires a
large constituent mass at low
energies.
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Gap Equation
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Σ
=

D

γ
ΓS

Sf (p)−1 = Z2 (iγ · p+mbm
f ) + Σf (p) ,

Σf (p) = Z1

∫ Λ

q
g2Dµν(p− q)

λa

2
γµSf (q)

λa

2
Γf

ν (q, p),
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Σ
=

D

γ
ΓS

Sf (p)−1 = Z2 (iγ · p+mbm
f ) + Σf (p) ,

Σf (p) = Z1

∫ Λ

q
g2Dµν(p− q)

λa

2
γµSf (q)

λa

2
Γf

ν (q, p),

Z1,2(ζ
2,Λ2) are respectively the vertex and quark wave

function renormalisation constants, with ζ the

renormalisation point

mbm(Λ) is the Lagrangian current-quark bare mass

Dµν(k) is the dressed-gluon propagator

Γf
ν (q, p) is the dressed-quark-gluon vertex
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General Form

Σ
=

D

γ
ΓS

Sf (p)−1 = Z2 (iγ · p+mbm
f ) + Σf (p) ,

Σf (p) = Z1

∫ Λ

q
g2Dµν(p− q)

λa

2
γµSf (q)

λa

2
Γf

ν (q, p),

Z1,2(ζ
2,Λ2) are respectively the vertex and quark wave

function renormalisation constants, with ζ the

renormalisation point

mbm(Λ) is the Lagrangian current-quark bare mass

Dµν(k) is the dressed-gluon propagator

Γf
ν (q, p) is the dressed-quark-gluon vertex

Suppose one has in-hand the exact form of Γf
ν (q, p)

What is the associated
Symmetry-preserving Bethe-Salpeter Kernel?
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Bound-state DSE
Bethe-Salpeter Equation

Standard form, familiar from textbooks

[

Γj
π(k;P )

]

tu
=

∫ Λ

q

[S(q + P/2)Γj
π(q;P )S(q − P/2)]sr K

rs
tu (q, k;P )

K(q, k;P ): Fully-amputated, 2-particle-irreducible,
quark-antiquark scattering kernel

Craig Roberts – Impact of DCSB on meson structure and interactions
11th International Workshop on Mesons – Kraków, Poland, 10-15 June 2010 . . . 29 – p. 15/30



First Contents Back Conclusion

Bound-state DSE
Bethe-Salpeter Equation

Standard form, familiar from textbooks

[

Γj
π(k;P )

]

tu
=

∫ Λ

q

[S(q + P/2)Γj
π(q;P )S(q − P/2)]sr K

rs
tu (q, k;P )

K(q, k;P ): Fully-amputated, 2-particle-irreducible,
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Compact. Visually appealing. Correct.
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Standard form, familiar from textbooks

[

Γj
π(k;P )

]

tu
=

∫ Λ

q

[S(q + P/2)Γj
π(q;P )S(q − P/2)]sr K

rs
tu (q, k;P )

K(q, k;P ): Fully-amputated, 2-particle-irreducible,
quark-antiquark scattering kernel

Compact. Visually appealing. Correct.

Blocked progress for more than 60 years.
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Bethe-Salpeter Equation
General FormL. Chang and C. D. Roberts

0903.5461 [nucl-th], Phys. Rev. Lett. 103 (2009) 081601

Equivalent exact form:

Γfg
5µ(k;P ) = Z2γ5γµ

−

∫

q
g2Dαβ(k − q)

λa

2
γαSf (q+)Γfg

5µ(q;P )Sg(q−)
λa

2
Γg

β(q−, k−)

+

∫

q
g2Dαβ(k − q)

λa

2
γαSf (q+)

λa

2
Λfg

5µβ(k, q;P ),

(Poincaré covariance, hence q± = q ± P/2, etc., without loss of generality.)
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Γfg
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−

∫
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g2Dαβ(k − q)
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2
γαSf (q+)Γfg

5µ(q;P )Sg(q−)
λa

2
Γg

β(q−, k−)

+

∫

q
g2Dαβ(k − q)

λa

2
γαSf (q+)

λa

2
Λfg

5µβ(k, q;P ),

(Poincaré covariance, hence q± = q ± P/2, etc., without loss of generality.)

In this form . . . Λfg
5µβ

is completely defined via the dressed-quark self-energy
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Bethe-Salpeter Kernel
60 year problemL. Chang and C. D. Roberts

0903.5461 [nucl-th], Phys. Rev. Lett. 103 (2009) 081601

Bethe-Salpeter equation introduced in 1951

Newly-derived Ward-Takahashi identity

PµΛfg
5µβ(k, q;P ) = Γf

β(q+, k+) iγ5 + iγ5 Γg
β(q−, k−)

− i[mf (ζ) +mg(ζ)]Λ
fg
5β(k, q;P ),
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0903.5461 [nucl-th], Phys. Rev. Lett. 103 (2009) 081601

Bethe-Salpeter equation introduced in 1951

Newly-derived Ward-Takahashi identity

PµΛfg
5µβ(k, q;P ) = Γf

β(q+, k+) iγ5 + iγ5 Γg
β(q−, k−)

− i[mf (ζ) +mg(ζ)]Λ
fg
5β(k, q;P ),

For first time: can construct Ansatz for Bethe-Salpeter

kernel consistent with any reasonable quark-gluon vertex

Consistent means - all symmetries preserved!
Craig Roberts – Impact of DCSB on meson structure and interactions
11th International Workshop on Mesons – Kraków, Poland, 10-15 June 2010 . . . 29 – p. 17/30

http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:0903.5461


First Contents Back Conclusion

Bethe-Salpeter Kernel
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0903.5461 [nucl-th], Phys. Rev. Lett. 103 (2009) 081601

Bethe-Salpeter equation introduced in 1951

Newly-derived Ward-Takahashi identity

PµΛfg
5µβ(k, q;P ) = Γf

β(q+, k+) iγ5 + iγ5 Γg
β(q−, k−)

− i[mf (ζ) +mg(ζ)]Λ
fg
5β(k, q;P ),

For first time: can construct Ansatz for Bethe-Salpeter

kernel consistent with any reasonable quark-gluon vertex

Procedure & results to expect . . .
see arXiv:1003.5006 [nucl-th]
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Mass Splitting
a1 – ρ

exp.

mass a1 1230

mass ρ 775

mass-

splitting 455

Splitting known experimentally for more than 35 years.

Hitherto, no explanation.

Craig Roberts – Impact of DCSB on meson structure and interactions
11th International Workshop on Mesons – Kraków, Poland, 10-15 June 2010 . . . 29 – p. 18/30



First Contents Back Conclusion

Mass Splitting
a1 – ρ

exp. rainbow- one-loop

ladder

mass a1 1230 759 885

mass ρ 775 644 764

mass-

splitting 455 115 121

Systematic, symmetry-preserving, Poincaré-covariant DSE

truncation scheme of nucl-th/9602012.

Never better than ∼ 1
4

of splitting.

Constructing kernel skeleton-diagram-by-diagram, DCSB

cannot be faithfully expressed: M(p2) is absent!
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Mass Splitting
a1 – ρ

exp. rainbow- one-loop Ball-Chiu

ladder consistent

mass a1 1230 759 885 1066

mass ρ 775 644 764 924

mass-

splitting 455 115 121 142

New nonperturbative, symmetry-preserving

Poincaré-covariant Bethe-Salpeter equation formulation of

arXiv:0903.5461 [nucl-th]

Ball-Chiu Ansatz for quark-gluon vertex

ΓBC
µ (k, p) = . . . + (k + p)µ

B(k)−B(p)
k2−p2

Some effects of DCSB built into vertex

Explains π – σ splitting but not this problem
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Mass Splitting
a1 – ρChang & Roberts arXiv:1003.5006 [nucl-th]

exp. rainbow- one-loop Ball-Chiu Ball-Chiu plus

ladder consistent anom. cm mom.

mass a1 1230 759 885 1066 1230

mass ρ 775 644 764 924 745

mass-

splitting 455 115 121 142 485

New nonperturbative, symmetry-preserving

Poincaré-covariant Bethe-Salpeter equation formulation of

arXiv:0903.5461 [nucl-th]

Ball-Chiu augmented by quark anomalous chromomagnetic

moment term: Γµ(k, p) = ΓBC
µ + σµν(k − p)ν

B(k)−B(p)
k2−p2
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Mass Splitting
a1 – ρChang & Roberts arXiv:1003.5006 [nucl-th]

exp. rainbow- one-loop Ball-Chiu Ball-Chiu plus

ladder consistent anom. cm mom.

mass a1 1230 759 885 1066 1230

mass ρ 775 644 764 924 745

mass-

splitting 455 115 121 142 485

New nonperturbative, symmetry-preserving

Poincaré-covariant Bethe-Salpeter equation formulation of

arXiv:0903.5461 [nucl-th]

DCSB is the answer. Subtle interplay between competing

effects, which can only now be explicated

Promise of first reliable prediction of light-quark meson

spectrum, including the so-called hybrid and exotic states.
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Quark Anomalous
Magnetic MomentsChang & Roberts, in progress

Massless fermion can’t possess an anomalous magnetic moment

Interaction term
∫

d4x 1
2
g ψ̄(x)σµνψ(x)Fµν(x)

explicitly breaks chiral symmetry
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Interaction term
∫

d4x 1
2
g ψ̄(x)σµνψ(x)Fµν(x)

explicitly breaks chiral symmetry

However, DCSB can generate a large anomalous
chromomagnetic moment even in chiral limit
– This explains the a1-ρ mass-splitting
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Preliminary result for
µ distributions

Cloët & Roberts
Effect on hadron form factors?
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necessarily
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κQCD = 0 ⇒ qπ
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DSE calculation shows this valid for Lx = {x|x > 0.86}.
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Following extensive study of nucleon elastic electromagnetic form factors,
Survey of nucleon electromagnetic form factors
I.C. Cloët et al., arXiv:0812.0416 [nucl-th], Few Body Syst. 46 (2009) pp. 1-36

with numerous predictions, either verified by experiment or serving to motivate
new experiments, studies are underway to elucidate signals of M(p2) in
Q2-evolution of nucleon elastic and transition form factors; viz.,

N → ∆

N → P11(1440) e.g., Fd
1
(Q2) = 0 at Q2/M2 ≈ 5
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N → P11(1440) e.g., Fd
1
(Q2) = 0 at Q2/M2 ≈ 5

κ(p2)

(M. Bhagwat, L. Chang, I. Cloët, H. Roberts)

Incorporate “resonant contributions” (pion cloud) in kernels of bound-state
equations (e.g., Eichmann, Roberts et al. – 0802.1948 [nucl-th] & Cloët, Roberts –
0811.2018 [nucl-th]; and Fischer, Williams – 0808.3372 [hep-ph])
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EpilogueDCSB exists in QCD.

It is manifest in dressed propagators and

vertices

It predicts, amongst other things, that

light current-quarks become heavy

constituent-quarks: 4 → 400 MeV

pseudoscalar mesons are unnaturally

light: mρ = 770 cf. mπ = 140 MeV

pseudoscalar mesons couple unnaturally

strongly to light-quarks: gπq̄q ≈ 4.3

pseudscalar mesons couple unnaturally

strongly to the lightest baryons

gπN̄N ≈ 12.8 ≈ 3gπq̄q
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Elastic and Transition Form Factors
But M(p2) is an essentially quantum field theoretical effect

Exposing & elucidating its effect in hadron physics requires

nonperturbative, symmetry preserving framework; i.e.,

Poincaré covariance, chiral and e.m. current conservation, etc.

DSEs provide such a framework.

Studies underway will identify observable signals of M(p2),

the most important mass-generating mechanism for visible

matter in the Universe

DSEs: Tool enabling insight to be drawn from experiment

into long-range piece of interaction between light-quarks
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Now is an exciting time . . .

Positioned to unify phenomena as apparently disparate as

Hadron spectrum

Elastic and transition form factors, from small- to large-Q2

Parton distribution functions

Key: an understanding of both the fundamental origin of nuclear

mass and the far-reaching consequences of the mechanism

responsible; namely, Dynamical Chiral Symmetry Breaking
Craig Roberts – Impact of DCSB on meson structure and interactions
11th International Workshop on Mesons – Kraków, Poland, 10-15 June 2010 . . . 29 – p. 29/30



First Contents Back Conclusion

Contents

1. Universal Truths

2. QCD’s Challenges

3. Charting the Interaction

4. Radial Excitations & χ-Symmetry

5. Radial Excitations & χ-Symmetry II

6. Radial Excitations& Lattice-QCD

7. Frontiers of Nuclear Science

8. Bound-state DSE

9. BSE – General Form

10. a1 – ρ

11. Quark Anom. Mag. Moms.

12. Goldberger-Treiman for pion

13. GT – Contact Interaction

14. Computation: Fπ(Q2)

15. Pion’s valence distribution

16. Kaon/Pion u-valence distribution

17. Current Projects

Craig Roberts – Impact of DCSB on meson structure and interactions
11th International Workshop on Mesons – Kraków, Poland, 10-15 June 2010 . . . 29 – p. 30/30


	
blue hypertarget {TheoryFF}{Universal} Truths
	
blue hypertarget {TheoryFF}{Universal} Truths
	
blue hypertarget {TheoryFF}{Universal} Truths
	
blue hypertarget {TheoryFF}{Universal} Truths
	
blue hypertarget {TheoryFF}{Universal} Truths
	
blue hypertarget {TheoryFF}{Universal} Truths
	
blue hypertarget {TheoryFF}{Universal} Truths

	
blue hypertarget {TheoryFFB}{Universal} Truths
	
blue hypertarget {TheoryFFB}{Universal} Truths
	
blue hypertarget {TheoryFFB}{Universal} Truths

	
blue hypertarget {emergent}{QCD's Challenges} �romSlide {5}{\ {purple Understand Emergent Phenomen
node {a}{a}}}
	
blue hypertarget {emergent}{QCD's Challenges} �romSlide {5}{\ {purple Understand Emergent Phenomen
node {a}{a}}}
	
blue hypertarget {emergent}{QCD's Challenges} �romSlide {5}{\ {purple Understand Emergent Phenomen
node {a}{a}}}
	
blue hypertarget {emergent}{QCD's Challenges} �romSlide {5}{\ {purple Understand Emergent Phenomen
node {a}{a}}}
	
blue hypertarget {emergent}{QCD's Challenges} �romSlide {5}{\ {purple Understand Emergent Phenomen
node {a}{a}}}

	
blue hypertarget {CDyn}{What} is the light-quark \ Long-Range Potential?
	
blue hypertarget {CDyn}{What} is the light-quark \ Long-Range Potential?

	
blue hypertarget {betafn}{Charting} the Interaction \ between light-quarks
	
blue hypertarget {betafn}{Charting} the Interaction \ between light-quarks
	
blue hypertarget {betafn}{Charting} the Interaction \ between light-quarks
	
blue hypertarget {betafn}{Charting} the Interaction \ between light-quarks
	
blue hypertarget {betafn}{Charting} the Interaction \ between light-quarks
	
blue hypertarget {betafn}{Charting} the Interaction \ between light-quarks

	
blue hypertarget {betafn2}{Charting} the Interaction \ between light-quarks
	
blue hypertarget {betafn2}{Charting} the Interaction \ between light-quarks
	
blue hypertarget {betafn2}{Charting} the Interaction \ between light-quarks

	
blue Charting the Interaction \ between light-quarks
	
blue Charting the Interaction \ between light-quarks
	
blue Charting the Interaction \ between light-quarks
	
blue Charting the Interaction \ between light-quarks

	
blue hypertarget {radialNew}{Radial Excitations\& Chiral Symmetry}
	
blue hypertarget {radialNew}{Radial Excitations\& Chiral Symmetry}
	
blue hypertarget {radialNew}{Radial Excitations\& Chiral Symmetry}
	
blue hypertarget {radialNew}{Radial Excitations\& Chiral Symmetry}
	
blue hypertarget {radialNew}{Radial Excitations\& Chiral Symmetry}
	
blue hypertarget {radialNew}{Radial Excitations\& Chiral Symmetry}
	
blue hypertarget {radialNew}{Radial Excitations\& Chiral Symmetry}
	
blue hypertarget {radialNew}{Radial Excitations\& Chiral Symmetry}

	
blue hypertarget {radialNewB}{Radial Excitations\& Chiral Symmetry}
	
blue hypertarget {radialNewB}{Radial Excitations\& Chiral Symmetry}
	
blue hypertarget {radialNewB}{Radial Excitations\& Chiral Symmetry}
	
blue hypertarget {radialNewB}{Radial Excitations\& Chiral Symmetry}
	
blue hypertarget {radialNewB}{Radial Excitations\& Chiral Symmetry}

	
blue hypertarget {latticeradial}{Radial Excitations\& Lattice-QCD}
	
blue hypertarget {latticeradial}{Radial Excitations\& Lattice-QCD}
	
blue hypertarget {latticeradial}{Radial Excitations\& Lattice-QCD}
	
blue hypertarget {latticeradial}{Radial Excitations\& Lattice-QCD}
	
blue hypertarget {latticeradial}{Radial Excitations\& Lattice-QCD}
	
blue hypertarget {latticeradial}{Radial Excitations\& Lattice-QCD}

	
blue Charting the Interaction \ between light-quarks
	
blue Charting the Interaction \ between light-quarks

	
blue hypertarget {lrp08}{Frontiers} of Nuclear Science: \ onlySlide *{1}{A Long Range Plan (2007)}
�romSlide *{2}{Theoretical Advances}
	
blue hypertarget {lrp08}{Frontiers} of Nuclear Science: \ onlySlide *{1}{A Long Range Plan (2007)}
�romSlide *{2}{Theoretical Advances}
	
blue hypertarget {lrp08}{Frontiers} of Nuclear Science: \ onlySlide *{1}{A Long Range Plan (2007)}
�romSlide *{2}{Theoretical Advances}
	
blue hypertarget {lrp08}{Frontiers} of Nuclear Science: \ onlySlide *{1}{A Long Range Plan (2007)}
�romSlide *{2}{Theoretical Advances}
	
blue hypertarget {lrp08}{Frontiers} of Nuclear Science: \ onlySlide *{1}{A Long Range Plan (2007)}
�romSlide *{2}{Theoretical Advances}
	
blue hypertarget {lrp08}{Frontiers} of Nuclear Science: \ onlySlide *{1}{A Long Range Plan (2007)}
�romSlide *{2}{Theoretical Advances}

	
blue Gap Equation\General Form
	
blue Gap Equation\General Form
	
blue Gap Equation\General Form
	
blue Gap Equation\General Form

	
blue hypertarget {BSE}{Bound-state DSE}\ �romSlide {2}{Bethe-Salpeter Equation}
	
blue hypertarget {BSE}{Bound-state DSE}\ �romSlide {2}{Bethe-Salpeter Equation}
	
blue hypertarget {BSE}{Bound-state DSE}\ �romSlide {2}{Bethe-Salpeter Equation}
	
blue hypertarget {BSE}{Bound-state DSE}\ �romSlide {2}{Bethe-Salpeter Equation}

	
blue hypertarget {BSEgen}{Bethe-Salpeter} Equation\General Form
	
blue hypertarget {BSEgen}{Bethe-Salpeter} Equation\General Form
	
blue hypertarget {BSEgen}{Bethe-Salpeter} Equation\General Form

	
blue Bethe-Salpeter Kernel\{�romSlide {2}{60 year problem}}
	
blue Bethe-Salpeter Kernel\{�romSlide {2}{60 year problem}}
	
blue Bethe-Salpeter Kernel\{�romSlide {2}{60 year problem}}
	
blue Bethe-Salpeter Kernel\{�romSlide {2}{60 year problem}}

	
blue hypertarget {a1rhoP}{Mass Splitting} \ mbox {�oldmath $a_1$ -- $
ho $}
	
blue hypertarget {a1rhoP}{Mass Splitting} \ mbox {�oldmath $a_1$ -- $
ho $}
	
blue hypertarget {a1rhoP}{Mass Splitting} \ mbox {�oldmath $a_1$ -- $
ho $}
	
blue hypertarget {a1rhoP}{Mass Splitting} \ mbox {�oldmath $a_1$ -- $
ho $}
	
blue hypertarget {a1rhoP}{Mass Splitting} \ mbox {�oldmath $a_1$ -- $
ho $}

	
blue hypertarget {AMM}{Quark Anomalous}\ Magnetic Moments
	
blue hypertarget {AMM}{Quark Anomalous}\ Magnetic Moments
	
blue hypertarget {AMM}{Quark Anomalous}\ Magnetic Moments
	
blue hypertarget {AMM}{Quark Anomalous}\ Magnetic Moments
	
blue hypertarget {AMM}{Quark Anomalous}\ Magnetic Moments

	
blue hypertarget {gtquark}{Goldberger-Treiman} for pion
	
blue hypertarget {gtquark}{Goldberger-Treiman} for pion
	
blue hypertarget {gtquark}{Goldberger-Treiman} for pion
	
blue hypertarget {gtquark}{Goldberger-Treiman} for pion
	
blue hypertarget {gtquark}{Goldberger-Treiman} for pion
	
blue hypertarget {gtquark}{Goldberger-Treiman} for pion

	
blue hypertarget {gtquarkFpi}{GT} for pion \ -- QCD and mbox {�oldmath $F_pi ^{
m em}(Q^2)$}
	
blue hypertarget {gtquarkFpi}{GT} for pion \ -- QCD and mbox {�oldmath $F_pi ^{
m em}(Q^2)$}
	
blue hypertarget {gtquarkFpi}{GT} for pion \ -- QCD and mbox {�oldmath $F_pi ^{
m em}(Q^2)$}

	
blue hypertarget {gtquarkNJL}{GT} for pion \ -- Contact Interaction
	
blue hypertarget {gtquarkNJL}{GT} for pion \ -- Contact Interaction
	
blue hypertarget {gtquarkNJL}{GT} for pion \ -- Contact Interaction
	
blue hypertarget {gtquarkNJL}{GT} for pion \ -- Contact Interaction
	
blue hypertarget {gtquarkNJL}{GT} for pion \ -- Contact Interaction
	
blue hypertarget {gtquarkNJL}{GT} for pion \ -- Contact Interaction

	
blue hypertarget {gtquarkNJL1}{GT} for pion \ -- Contact Interaction
	
blue hypertarget {gtquarkNJL1}{GT} for pion \ -- Contact Interaction
	
blue hypertarget {gtquarkNJL1}{GT} for pion \ -- Contact Interaction
	
blue hypertarget {gtquarkNJL1}{GT} for pion \ -- Contact Interaction
	
blue hypertarget {gtquarkNJL1}{GT} for pion \ -- Contact Interaction
	
blue hypertarget {gtquarkNJL1}{GT} for pion \ -- Contact Interaction
	
blue hypertarget {gtquarkNJL1}{GT} for pion \ -- Contact Interaction
	
blue hypertarget {gtquarkNJL1}{GT} for pion \ -- Contact Interaction

	
blue hypertarget {FpiNJL}{{myred Computation}}: Elastic\ Pion Form Factor
	
blue hypertarget {FpiNJL}{{myred Computation}}: Elastic\ Pion Form Factor
	
blue hypertarget {FpiNJL}{{myred Computation}}: Elastic\ Pion Form Factor
	
blue hypertarget {FpiNJL}{{myred Computation}}: Elastic\ Pion Form Factor

	
blue hypertarget {upiHolt}{Pion's}\ valence distribution
	
blue hypertarget {upiHolt}{Pion's}\ valence distribution
	
blue hypertarget {upiHolt}{Pion's}\ valence distribution
	
blue hypertarget {upiHolt}{Pion's}\ valence distribution
	
blue hypertarget {upiHolt}{Pion's}\ valence distribution
	
blue hypertarget {upiHolt}{Pion's}\ valence distribution

	
blue hypertarget {ruKupi}{Ratio} -- Kaon/Pion\ u-valence distribution
	
blue hypertarget {ruKupi}{Ratio} -- Kaon/Pion\ u-valence distribution
	
blue hypertarget {ruKupi}{Ratio} -- Kaon/Pion\ u-valence distribution
	
blue hypertarget {ruKupi}{Ratio} -- Kaon/Pion\ u-valence distribution
	
blue hypertarget {ruKupi}{Ratio} -- Kaon/Pion\ u-valence distribution

	
blue hypertarget {Future}{Some projects}\ currently underway
	
blue hypertarget {Future}{Some projects}\ currently underway
	
blue hypertarget {Future}{Some projects}\ currently underway

	
blue hypertarget {Conclusion}{Epilogue}
	
blue hypertarget {Conclusion}{Epilogue}
	
blue hypertarget {Conclusion}{Epilogue}
	
blue hypertarget {Conclusion}{Epilogue}
	
blue hypertarget {Conclusion}{Epilogue}
	
blue hypertarget {Conclusion}{Epilogue}
	
blue hypertarget {Conclusion}{Epilogue}
	
blue hypertarget {Conclusion}{Epilogue}
	
blue hypertarget {Conclusion}{Epilogue}

	
blue hypertarget {Conclusion2}{Epilogue}
	
blue hypertarget {Conclusion2}{Epilogue}

	
blue hypertarget {Contents}{Contents} 

