

The ABC Effect and its Energy Dependance in the Double-Pionic Fusion to ⁴He

Annette Pricking University of Bonn / Tübingen

for the WASA-at-COSY Collaboration

MESON 2010 Krakow, June 14th 2010

supported by COSY FFE, BMBF, Europ. Grad.School

What is the ABC Effect ?

Abashian, Booth, Crowe, Phys. Rev. Lett. 5, 258 (1960)

- two pion production in nuclear fusion reactions to d, ³He, ⁴He
- X isoscalar and neutral
- inclusive measurements

 $pn \rightarrow d X$

How to explain it ?

 $pn \rightarrow d X$

Only inclusive measurements !

How to explain it ?

$pn \rightarrow d X$ Only inclusive measurements !

exclusive, kinematically complete, high statistics start with CELSIUS-WASA, continued with WASA-at-COSY

- pn \rightarrow d $\pi\pi$ \rightarrow paper in preparation M. Bashkanov
- pd \rightarrow ³He $\pi\pi$ \rightarrow first results on the way E. Perez del Rio
- dd \rightarrow ⁴He $\pi\pi$ \rightarrow this talk

exclusive, kinematically complete, high statistics **pn** \rightarrow **d** $\pi \pi$ \rightarrow **paper in preparation M. Bashkanov** (see also poster #4)

exclusive, kinematically complete, high statistics **pn** \rightarrow **d** $\pi \pi$ \rightarrow **paper in preparation M. Bashkanov** (see also poster #4)

exclusive, kinematically complete, high statistics start with CELSIUS-WASA, continued with WASA-at-COSY

- pn \rightarrow d $\pi\pi$ \rightarrow paper in preparation M. Bashkanov
- pd \rightarrow ³He $\pi\pi$ \rightarrow first results on the way E. Perez del Rio
- dd \rightarrow ⁴He $\pi\pi$ \rightarrow this talk

September and December 2007:

9 beam energies

1.0 GeV 1.2 GeV (two weeks commissioning beamtime, September)

0.8 GeV 0.9 GeV 1.05 GeV 1.117 GeV 1.25 GeV 1.320 GeV 1.4 GeV

(two weeks dedicated beamtime, December)

$dd \rightarrow {}^{4}He \pi^{0}\pi^{0}$

- deuteron beam, deuteron pellets
- ⁴He stopping in first 3 thick layers of the forward detector
- π^0 decays in 2 $\gamma \rightarrow$ detect 4 neutral tracks in central detector

Analysis

$\Delta E-E Plots$

Identify the two π^{o}

Find the best combination of 4 γ which form two π^0

Kinematic Fit with 6 overconstraints

improve resolution

• find best $\gamma\gamma \leftrightarrow \pi^0$ combination

³He / ⁴He separation

Efficiency and acceptance corrections

³He / ⁴He Separation with Kinematic Fit

all He which have $2\pi^0$

He FHR1 vs FRH2 Data EKH1 [66] 0.35 0.35 0.25 0.2 0.15 0.1 0.05 00^L 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 FRH2 [GeV]

kinematic fit assuming the He to be ⁴He

Check ³He / ⁴He Separation

Missing Mass of the Total System

Check ³He / ⁴He Separation

Results:

differential cross sections

1.117 GeV

Dalitz Plots

Total Cross Section

- Absolute normalization with $dd \rightarrow {}^{3}He n$
- Easy to separate from other reactions
- Same trigger as $dd \rightarrow {}^{4}He \pi {}^{0}\pi {}^{0}$
- Saclay data available Bizard et al. PhysRevC.22.1632

Total Cross Section

Total Cross Section

M. Bashkanov paper in preparation

Summary

- exclusive data of dd \rightarrow ⁴He $\pi\pi$ were taken at 9 different energies
- preliminary results for $\pi^0 \pi^0$
 - pronounced low-mass enhancement in the $\pi^0 \pi^0$ invariant mass spectrum
 - clear signal of $\Delta\Delta$ in ⁴He π^{0} invariant mass / Dalitz plot
 - strong angular dependence
 - strong energy dependence in total cross section
 - t-channel $\Delta\Delta$ model at variance with data

Summary and Outlook

- exclusive data of dd \rightarrow ⁴He $\pi\pi$ were taken at 9 different energies
- preliminary results for $\pi^0 \pi^0$
 - pronounced low-mass enhancement in the $\pi^0 \pi^0$ invariant mass spectrum
 - clear signal of $\Delta\Delta$ in ⁴He π^{0} invariant mass / Dalitz plot
 - strong angular dependence
 - strong energy dependence in total cross section
 - t-channel $\Delta\Delta$ model at variance with data

- still: finalize analysis
- try to understand the result ...
 - ABC group at COSY: experimentalists and theorists (ANKE, WASA ...)

Summary and Outlook

- exclusive data of dd \rightarrow ⁴He $\pi\pi$ were taken at 9 different energies preliminary results for $\pi^0\pi^0$
- pronounced low-mass enhancement in the $\pi^0 \pi^0$ invariant mass spectrum clear signal of $\Delta \Delta$ in ⁴He π^0 invariant mass / Dalitz plot strong angular dependence strong energy dependence in total cross section
- t-channel $\Delta\Delta$ model at variance with data
- still: finalize analysis
- try to understand the result ...
- ABC group at COSY: experimentalists and theorists (ANKE, WASA ...)

 $M_{\pi^0\pi^0}$

 $cos(\theta_{\pi^0\pi^0})$

 $M_{^4H\!en}$ 0

KinFit

now do kinematic fit assuming the forward particle to be ⁴He
perform one fit for each combination of gammas

Not corrected before kinfit $M_{\pi^0\pi^0}$

total cross section

Absolute normalization with dd \rightarrow ³He n

Easy to separate

Same trigger

Saclay data available **at 4 different energies**

Fit differential spectra with f = p1*exp(p2) + p3*exp(p4) + p5*exp(p6)Fit the parameters to get the energy dependance

Integral of fitted sigma(t-tmax)

total cross section

- we had thresholds on FRH1 ...
 - ³He deposites much less energy: cut in some elements
 - might also cut in ⁴He for some elements
 - \rightarrow identify such elements, not used for cross section determination
- 1320 and 1400 MeV: FRH4, FRH5 not calibrated
 - \rightarrow do ³Hen selection for single elements
 - $\rightarrow \theta$ is ok, and that gives Ekin (binary reaction)
- **1200 MeV**: low statistics, hard to identify the bad elements in ⁴He

- 900 and 1050:

Trigger including a Veto on FRH3, while all ³Hen come to FRH3 \dots

- \rightarrow 900 MeV 1 run without veto
- \rightarrow 1050 MeV second trigger without Veto

Comparison to Celsius-Wasa data at 1.029 GeV 💽 🚺

before acceptance and efficiency correction

1.029 GeV

1.05 GeV

S.Keleta PhD Thesis

³He / ⁴He Separation with Kinematic Fit

all He which have $2\pi^0$

Prob(χ ²,6)