

Investigations of the Charge Symmetry conserving reaction d d \rightarrow ³He N π with WASA-at-COSY

Pawel Podkopal Jagiellonian University, Cracow

for the WASA-at-COSY Collaboration

- physics motivation
- concept of measurement
- status of analysis
- summary and outlook

Motivation

WASA-at-COSY: Investigation of fundamental symmetries in hadron physics

Measurement of Charge Symmetry Conserving reaction d d \rightarrow ³He n π^{0} at 1.2 GeV/c as a first step towards d d \rightarrow ⁴He π^{0}

- the same initial state as in d d \rightarrow ⁴He π^{0}
- study the isospin conserving π⁰ production in 4N system (the same partial waves)
 s- and p- wave pion production: ³P₀, ³P₁, and ⁵D₀, ⁵D₁, ⁵D₂, ¹S₀, ⁵S₂ for dd system
- for d d \rightarrow A N π the transition operators can be calculated within ChPT with known amplitudes (since the reaction is isospin conserving)
- unknown cross section

Measurement of the d d \rightarrow ³He n π^0

deuteron beam, deuteron target ^{3}He identified in FD, mostly stopped in FTH2 $\pi^{0}\!\rightarrow\gamma\gamma\,\,$ detected in CD

Signature of the d d \rightarrow ³He n π^0

³He identification

Event selection

- one ³He candidate in Forward Detector
- * two neutral clusters in Calorimeter
- no charged hits in Central Tracker

Kinematic studies

3 body phase space:

s- wave in both systems , *s*- wave in π -n system, *p*- wave for ³He

- angular distribution for ³He in CM (for *s* isotropic , for *p* quadratic)
- π angular distribution isotropic in π -n

quasi free (n spectator from target)

- π angular distribution from Cameron et al., Nucl. Phys. A472 (1987) 718, pd \rightarrow ³He π^0 @ 350 MeV

Results of analysis

missing mass of ${}^{3}\text{He}\pi^{0}$

statistics ≈ 200000 events

neutron undetected ³He, π^0 measured

Kinematic fit

Dalitz Plot

Luminosity determination

identification of binary reaction: d d \rightarrow ³He n

Luminosity determination

Luminosity determination

cross section at 1.2 GeV/c

 σ calculated numerically, range (0.756-0.96)

11

Differential distributions

Total cross section

$$\begin{split} \mathsf{L}_{\mathsf{int}} &= (350.1 \pm 1.8(\mathsf{stat}) \pm 24.8(\mathsf{sys}) \) \ \mathsf{nb}^{-1} \\ \sigma_{\mathsf{TOT}} &= \frac{\mathsf{N}_{\mathsf{exp}}}{\mathsf{L}_{\mathsf{inte}} \cdot \epsilon_{\mathsf{eff}-\mathsf{acc}}} \qquad \qquad \epsilon_{\mathsf{eff}-\mathsf{acc}} = \frac{\mathsf{A}_1 \cdot \mathsf{w}_1 + \mathsf{A}_2 \cdot \mathsf{w}_2 + \mathsf{A}_3 \cdot \mathsf{w}_3}{\mathsf{G}_1 \cdot \mathsf{w}_1 + \mathsf{G}_2 \cdot \mathsf{w}_2 \mathsf{G}_3 \cdot \mathsf{w}_3} \\ \sigma_{\mathsf{TOT}} &= (\ 3.47 \pm 0.02(\mathsf{stat}) \pm 0.40(\mathsf{sys}) \) \ \mathsf{\mu b} \end{split}$$

theoretical estimations for: d d \rightarrow ⁴He π^{0}

 $\sigma_{_{TOT}}(1.4/3 \text{ MeV}) \approx 12/15 \text{ pb}$ scaling by s- wave ph. sp. $\sigma_{_{TOT}}(60 \text{ MeV}) \approx 100 \text{ pb}$

Taking the amplitude of the Charge Symmetry Breaking channel as reference, which is suppressed by factor α compared to Charge Symmetry Conserving one, the cross section is expected to be approximately a factor $(1/\alpha)^2 \approx 2 \cdot 10^4$ larger

summary and outlook

- high statistics (200000 events) sample of d d \rightarrow ³He n π^0 collected
- preliminary cross section
 - [>] important in the context of d d \rightarrow ⁴He π^0 , main background channel
- preliminary studies of Dalitz plots give a hint that for d d \rightarrow ³He n π^0 at Q \approx 60 MeV in final state we have mostly ³He in *p* wave and pion in *s* wave in π -n system

outlook

comparison of results with:

- d d \rightarrow ³He p π^{-} WASA (analysis W. Weglorz)
- d d \rightarrow ³He N π close to threshold, ANKE (analysis M. Smiechowicz)

Support from Theoreticians needed