Spin effects in diffractive charmonia production

Roman Pasechnik

Uppsala University

In collaboration with: Antoni Szczurek (IFJ, Krakow) and Oleg Teryaev (JINR, Dubna)

MESON 2010, KRAKÓW, June 11th, 2010

Diffractive Higgs/meson production: motivation

Search for Higgs – primary task for LHC.

Diffractive production of Higgs – an alternative to inclusive production (background reduction).

QCD mechanism proposed by Kaidalov, Khoze, Martin and Ryskin (ref. as <u>KKMR approach</u>).

AS A SPIN-PARITY ANALYSER

V.A. Khoze, A.D. Martin and M.G. Ryskin, Phys. Lett. **B401** (1997) 330.

V.A. Khoze, A.D. Martin and M.G. Ryskin, Eur. Phys. J. C23 (2002) 311.

A.B. Kaidalov, V.A. Khoze, A.D. Martin and M.G. Ryskin, Eur. Phys. J. C **31**, 387 (2003) [arXiv:hep-ph/0307064].

A.B. Kaidalov, V.A. Khoze, A.D. Martin and M.G. Ryskin, Eur. Phys. J. C33 (2004) 261.

Still not possible to study Higgs at present.

Replace Higgs by a meson (scalar, pseudoscalar, vector, tensor, etc).

Diffractive χ_c production measured recently by CDF collaboration at Tevatron.

T. Aaltonen et al, Phys.Rev.Lett.102:242001,2009.

$$\frac{d\sigma}{dy}\Big|_{y=0}(\chi_c(0^+)) \simeq \frac{1}{\mathrm{BR}(\chi_c(0^+) \to J/\psi + \gamma)} \frac{d\sigma}{dy}\Big|_{y=0}(pp \to pp(J/\psi + \gamma)) = (76 \pm 14) \,\mathrm{nb}.$$

It is interesting to test KKMR approach for diffractive light mesons/heavy quarkonia production at high energies – a good probe of nonperturbative dynamics of partons described by UGDFs and related factorisation concepts.

Diffractive heavy quarkonia production: basic ideas

Based on inclusive production by:

P. Hagler, R. Kirshner, A. Schafer, L. Szymanowski, O. Teryaev, '00, '01 A. Lipatov, V. Saleev, N. Zotov, '01, '03

Why don't we apply the same ideas for exclusive production processes?

Our goals:

- to apply KKMR QCD mechanism to heavy quarkonia production
- to calculate the off-shell production matrix element
- to explore related uncertainties as indirect check of QCD factorisation principles
- to probe nonperturbative gluon dynamics at small qt by using different models for UGDFs → <u>spin effects!</u>

The QCD mechanism: amplitude

The QCD mechanism: kinematics

$$q_{1,2} = x_{1,2}p_{1,2} + q_{1/2,t}, \quad x'_{1,2} \sim \frac{q_{0,t}}{\sqrt{s}} \ll x_{1,2}$$

- We goes beyond the forward limit p'_{1/2,t}² ≃ -(1 - x_{1,2})t_{1,2}, |t_{1,2}| ≤ 1 GeV²
 Original KKMR approach does not account for x' dependence, just the limit x'<<x; It is hard to do → kinematics of double diffraction does not predict the exact value of x'!
- We probe x' to be small enough w.r.t. x but finite setting up naively:

$$x' = \xi \frac{q_{0,t}}{\sqrt{s}}, \quad 0.1 < \xi < 2$$

Thus, <u>the reliability of KKMR approach</u> is justified if:

1) The most contribution to the diffractive amplitude comes from nonperturbative q0t < 1 GeV!

2) The results change very slowly when $\xi \rightarrow 0$! If it is strong, then unknown x' may produce extra theoretical uncertainties in the KKMR approach.

In terms of the meson rapidity

$$x_{1,2} = \frac{M_\perp^2}{\sqrt{s}} \exp(\pm y)$$

Due to **x'<<x** we have:

 $q_{0,t} \ll M_{\perp},$ for $\xi \sim 1$

KMR UGDF: role of nonperturbative transverse momenta

two gluons are replaced by one "effective" gluon with Qt=min(q0t,q1/2t) and x:

Off-diagonal (skewed) UGDFs: general properties

Currently unknown; we model the skewedness effect using positivity constraints (Pire,Soffer,Teryaev'99) as

$$f_{g,1}^{\text{off}}(x_1, x_1', k_{0,t}^2, k_{1,t}^2, t_1) = \sqrt{f_g^{(1)}(x_1', k_{0,t}^2, \mu_0^2) \cdot f_g^{(1)}(x_1, k_{1,t}^2, \mu^2)} \cdot F_1(t_1)$$

$$f_{g,2}^{\text{off}}(x_2, x_2', k_{0,t}^2, k_{2,t}^2, t_2) = \sqrt{f_g^{(2)}(x_2', k_{0,t}^2, \mu_0^2) \cdot f_g^{(2)}(x_2, k_{2,t}^2, \mu^2)} \cdot F_1(t_2)$$

motivated by positivity of density matrix (saturation of Cauchy-Schwarz inequality)

factorisation scale choice – three basic options:

non-perturbative input for QCD evolution: $Q_0^2 = 0.26 \,\, {\rm GeV^2}$

(1)
$$\mu_0^2 = M^2$$
, $\mu^2 = M^2$, **(KKMR choice)**
(2) $\mu_0^2 = Q_0^2$, $\mu^2 = M^2$,
(3) $\mu_0^2 = q_{0,t}^2$ (+freezing at $q_{0,t}^2 < Q_0^2$), $\mu^2 = M^2$

Gluck, Reya, Vogt '95, '98

kt-dependence:
$$k_t^2 \to 0$$
 $f(x, k_t^2) \to 0$, $\frac{f(x, k_t^2)}{k_t^2} = \mathcal{F}(x, k_t^2) \to const$

Production vertex: scalar charmonium

 $gg \rightarrow \chi_c$ vertex

$$V_J^{c_1c_2} = \mathcal{P}(q\bar{q} \to \chi_{cJ}) \bullet \Psi_{ik}^{c_1c_2}(k_1, k_2)$$

pNRQCD projector to color singlet bound state

 $\Psi(c_1, c_2; i, k; k_1, k_2) = -g^2(t_{ij}^{c_1} t_{jk}^{c_2} b(k_1, k_2) - t_{kj}^{c_2} t_{ji}^{c_1} \overline{b}(k_2, k_1)), \quad \alpha_s = \frac{g^2}{4\pi}$

when projecting to colour singlet state

$$p(k_1, k_2) = \gamma^{-} \frac{\hat{q}_1 - \hat{k}_1 - m}{(q_1 - k_1)^2 - m^2} \gamma^{+} - \frac{\gamma_{\beta} \Gamma^{+-\beta}(q_2, q_1)}{(k_1 + k_2)^2}$$
$$\bar{b}(k_1, k_2) = \gamma^{+} \frac{\hat{q}_1 - \hat{k}_1 + m}{(q_1 - k_1)^2 - m^2} \gamma^{-} - \frac{\gamma_{\beta} \Gamma^{+-\beta}(q_2, q_1)}{(k_1 + k_2)^2}$$

turn to the standard Feynman rules for the colour singlet state (see, Kuhn et al Nucl.Phys'79 for γγ-vertex)

Pasechnik, Szczurek, Teryaev, PRD'08

$$V_{J=0}^{c_1c_2}(q_1, q_2) = 8ig^2 \frac{\delta^{c_1c_2}}{M} \frac{\mathcal{R}'(0)}{\sqrt{\pi M N_c}} \frac{3M^2(q_{1,t}q_{2,t}) + 2q_{1,t}^2 q_{2,t}^2 - (q_{1,t}q_{2,t})(q_{1,t}^2 + q_{2,t}^2)}{(M^2 - q_{1,t}^2 - q_{2,t}^2)^2}$$

gluon virtualities are explicitly taken into account!

Production vertex: axial-vector charmonium

In the Lorentz-covariant form

Bose-symmetric w.r.t. interchange of gluon polarisation vectors and transverse momenta

Production vertex: tensor charmonium

Pasechnik, Szczurek, Teryaev, PRD'10

$$\begin{split} V_{J=2}^{c_{1}c_{2}} &= 2ig^{2}\sqrt{\frac{3}{M\pi N_{c}}}\frac{\delta^{c_{1}c_{2}}\mathcal{R}'(0)\epsilon_{\rho\sigma}^{(\lambda)}}{MM_{\perp}^{2}(q_{1}q_{2})^{2}} \left[(q_{1,t}q_{2,t})(q_{1}^{\sigma}-q_{2}^{\sigma}) \left\{ P^{\rho}(q_{1,t}^{2}-q_{2,t}^{2}) + (x_{1}p_{1}^{\rho}-x_{2}p_{2}^{\rho})M^{2} - (q_{1,t}^{\rho}-q_{2,t}^{\rho})M^{2} \right\} - 2(q_{1}q_{2}) \left\{ M^{2}(q_{1,t}^{\rho}q_{2,t}^{\sigma}+q_{1,t}^{\sigma}q_{2,t}^{\rho}) - q_{1,t}^{2}(q_{1,t}^{\rho}q_{2,t}^{\sigma}+q_{2,t}^{\sigma}q_{2,t}^{\rho}) - q_{2,t}^{2}(q_{1,t}^{\sigma}q_{2,t}^{\rho}+q_{1,t}^{\sigma}q_{1,t}^{\rho}) + (x_{1}p_{1}^{\sigma}-x_{2}p_{2}^{\sigma})(q_{1,t}^{2}q_{2,t}^{\rho}-q_{2,t}^{2}q_{1,t}^{\rho}) + (q_{1,t}q_{2,t})(x_{1}p_{1}^{\rho}-x_{2}p_{2}^{\rho})(q_{1,t}^{\sigma}-q_{2,t}^{\sigma}) - 2q_{1,t}^{2}x_{1}p_{1}^{\rho}q_{2,t}^{\sigma} - 2q_{2,t}^{2}x_{2}p_{2}^{\rho}q_{1,t}^{\sigma} + 2(q_{1,t}q_{2,t})(x_{1}p_{1}^{\sigma}q_{2,t}^{\rho}+x_{2}p_{2}^{\sigma}q_{1,t}^{\rho}) + \frac{M_{\perp}^{2}}{s}(q_{1,t}q_{2,t})(p_{1}^{\rho}p_{2}^{\sigma}+p_{2}^{\rho}p_{1}^{\sigma}) \right\} \end{split}$$

meson polarisation tensor with definite helicity λ

$$\epsilon_{\mu\nu}(\lambda) = \frac{\sqrt{6}}{12}(2-|\lambda|)(1-|\lambda|)\left[g_{\mu\nu}-\frac{P_{\mu}P_{\nu}}{M^2}\right] + \frac{\sqrt{6}}{4}(2-|\lambda|)(1-|\lambda|)n_3^{\mu}n_3^{\nu} + \frac{1}{4}\lambda(1-|\lambda|)[n_1^{\mu}n_1^{\nu}-n_2^{\mu}n_2^{\nu}] + \frac{1}{4}i|\lambda|(1-|\lambda|)[n_1^{\mu}n_2^{\nu}+n_2^{\mu}n_1^{\nu}] + \frac{1}{2}\lambda(2-|\lambda|)[n_1^{\mu}n_3^{\nu}+n_3^{\mu}n_1^{\nu}] + \frac{1}{2}i|\lambda|(2-|\lambda|)[n_2^{\mu}n_3^{\nu}+n_3^{\mu}n_2^{\nu}]$$

finally, in the same coordinates as for axial-vector case

$$\begin{aligned} V_{J=2,\lambda}^{c_{1}c_{2}} &= 2ig^{2}\delta^{c_{1}c_{2}}\sqrt{\frac{1}{3M\pi N_{c}}}\frac{\mathcal{R}'(0)}{M|\mathbf{P}_{t}|^{2}(M^{2}-q_{1,t}^{2}-q_{2,t}^{2})^{2}} \times \\ & \left[6M^{2}i|\lambda|(q_{1,t}^{2}-q_{2,t}^{2})\operatorname{sign}(Q_{t}^{y})\Big\{ |[\mathbf{q}_{1,t}\times\mathbf{q}_{2,t}]\times\mathbf{n}_{1}|(1-|\lambda|)\operatorname{sign}(\sin\psi)\operatorname{sign}(\cos\psi) + \\ & 2|[\mathbf{q}_{1,t}\times\mathbf{q}_{2,t}]\times\mathbf{n}_{3}|(2-|\lambda|)\Big\} - \left[2q_{1,t}^{2}q_{2,t}^{2} + (q_{1,t}^{2}+q_{2,t}^{2})(q_{1,t}q_{2,t})\right] \Big\{ 3M^{2}(\cos^{2}\psi+1)\lambda(1-|\lambda|) + \\ & 6ME\sin(2\psi)\lambda(2-|\lambda|)\operatorname{sign}(\sin\psi)\operatorname{sign}(\cos\psi) + \sqrt{6}\left(M^{2}+2E^{2}\right)\sin^{2}\psi\left(1-|\lambda|\right)(2-|\lambda|)\Big\} \Big] \end{aligned}$$

Properties of helicity amplitudes: maximal helicity enhancement

Helicity amplitudes squared as functions of meson rapidity for $\phi = \pi/2$ (angle between gluon qt's)

$$|V|_{\lambda=0}^2 = S \frac{|\mathbf{P}_t|^2(\cosh y + 1)}{M^2(\cosh y - 1) + |\mathbf{P}_t|^2(\cosh y + 1)}, \ |V|_{\lambda=\pm 1}^2 = \frac{S}{2} \frac{M^2(\cosh y - 1)}{M^2(\cosh y - 1) + |\mathbf{P}_t|^2(\cosh y + 1)}$$

Kinematical **"maximal helicity enhancement"** (similar effect observed by WA102 for f1(1285), f1(1420) -production; initially predicted by Boreskov'69 and revived in diffraction in KKMR'03)

Nonrelativistic (heavy) meson is dominated by $\lambda=0$ contribution. relativistic (almost massless) meson \rightarrow by maximal λ contribution.

Results for different UGDFs: scalar, axial-vector and tensor charmonia

Rapidity distributions

t-dependences are similar!

Azimuthal angle correlations

Relative contributions of charmonium spin states

Absorbtion factors (KMR'09): $\langle S_{\text{eff}}^2(\chi_c(0^+)) \rangle \simeq 0.02, \ \langle S_{\text{eff}}^2(\chi_c(1^+)) \rangle \simeq 0.05 \text{ and } \langle S_{\text{eff}}^2(\chi_c(2^+)) \rangle \simeq 0.05.$

skewed UGDF		$\chi_{c}(0^{+})$		$\chi_c(1^+)$		$\chi_c(2^+)$		ratio		signal
prescription	ξ	$\frac{d\sigma_{\chi_c}}{dy}$	$rac{d\sigma_{J/\psi\gamma}}{dy}$	$\frac{d\sigma_{\chi_c}}{dy}$	$\frac{d\sigma_{J/\psi\gamma}}{dy}$	$\frac{d\sigma_{\chi_c}}{dy}$	$\frac{d\sigma_{J/\psi\gamma}}{dy}$	$1^{+}/0^{+}$	$2^{+}/0^{+}$	$\frac{d\sigma_{obs}}{dy}$
GBW [30], " R_g "		94.2	1.07	1.64	0.58	19.5	3.78	0.5	3.5	5.4
GBW [30], "sqrt"	1.0	13.2	0.15	0.13	0.04	2.07	0.39	0.3	2.6	0.6
	0.3	12.8	0.15	0.13	0.04	1.65	0.34	0.3	2.3	0.5
lin KS [31], " R_g "		32.6	0.37	0.93	0.31	1.34	0.25	0.8	0.7	0.9
lin KS [31], "sqrt"	1.0	17.2	0.19	0.44	0.16	0.98	0.19	0.8	1.0	0.5
nlin KS [31], "sqrt"	1.0	12.6	0.14	0.36	0.12	0.67	0.13	0.9	0.9	0.4
	0.3	20.6	0.23	0.58	0.20	1.04	0.20	0.9	0.9	0.6
	0.1	29.6	0.34	0.84	0.29	1.4	0.27	0.9	0.8	0.9
KMR [13], GRV94LO,										
$q_{0,t}^{cut} = 0.85 \mathrm{GeV}$	—	48.8	0.56	1.94	0.66	1.61	0.31	1.2	0.6	1.5
KMR [13], GRV94HO,										
$q_{0,t}^{cut} = 0.85 \mathrm{GeV}$	—	13.5	0.16	0.58	0.19	0.45	0.09	1.2	0.6	0.4
KMR [13], GRV94HO,										
$q_{0,t}^{cut}=0.60{\rm GeV}$		33.8	0.39	1.11	0.38	1.18	0.23	1.0	0.6	1.0
HKRS result [10]										
$q_{0,t}^{cut} = 0.85 \mathrm{GeV}$		27.1	0.31	0.72	0.25	0.95	0.19	0.8	0.6	0.7

Measurement of spin-1 and spin-2 contributions separately would allow to put strict constraints on UGDF models

Axial-vector and tensor charmonia polarizations

Tensor case

minimal helicity dominance in differential cross section at y=0!

Angular distribution of J/ψ mesons

$$pp \to pp(\chi_{cJ} \to J/\psi\gamma)$$

$$\frac{d\sigma_{J/\psi}^J}{d\Omega} = B_J(\chi_{cJ} \to J/\psi\gamma) \cdot W(\theta,\phi), \qquad W(\theta,\phi) = \sum_{\lambda,\lambda'=-J}^J \rho_{\lambda\lambda'}^J A_{\lambda\lambda'}^J(\theta,\phi),$$

Axial-vector case

$$\begin{split} W^{J=1}(\theta,\phi) &= \frac{3}{4\pi} \bigg\{ \rho_{0,0}^1 \left[r_0^1 \cos^2 \theta + \frac{r_1^1}{2} \sin^2 \theta \right] + \rho_{1,1}^1 \left[r_0^1 \sin^2 \theta + \frac{r_1^1}{2} (1 + \cos^2 \theta) \right] - \\ &- \sqrt{2} \sin(2\theta) \left(r_0^1 - \frac{r_1^1}{2} \right) \left[\operatorname{Re}(\rho_{1,0}^1) \cos \phi - \operatorname{Im}(\rho_{1,0}^1) \sin \phi \right] - \\ &- \sin^2 \theta \left(r_0^1 - \frac{r_1^1}{2} \right) \left[\operatorname{Re}(\rho_{1,-1}^1) \cos(2\phi) - \operatorname{Im}(\rho_{1,-1}^1) \sin(2\phi) \right] \bigg\}, \end{split}$$

--- Different functional dependence on polar angle at small and large meson rapidities; --- Importance of non-diagonal elements of density matrix in azimuthal angular dependences;

--- Possibility for experimental separation of spin contributions \rightarrow better constraints on QCD diffractive mechanism and UGDFs!

Conclusion and discussions

1. *Total and differential cross sections* of exclusive diffractive production of heavy scalar, axial-vector and tensor charmonia are calculated. *The maximal helicity* dominance in the integrated cross-section is demonstrated.

2. *Significant contribution* to the diffractive cross section comes from *non-perturbative Qt region* (order of fraction of GeV), so we apply *a sort of continuation* of perturbative result to the region where its applicability *cannot be rigorously proven*.

3. Measurements of polar/azimuthal angular distributions of J/ψ mesons would allow to separate different spin states and to put extra stronger constraints on QCD mechanism and non-perturbative gluon dynamics described by UGDFs.