Study on the Two-Photon Transition from $\psi(2S)$ to J/ψ at BESIII

Xiao-Rui Lu

(E-mail: xiaorui@gucas.ac.cn)

Graduate University of Chinese Academy of Sciences (GUCAS)

(on behalf of BESIII Collaboration)

List of Contents:

- Introduction
- BEPCII and BESIII Experiment
- Data Analysis
- Systematic Studies on the Enhancement
- Summary

Introduction I

Two-photon transition from $\psi(2S)$ to J/ψ :

On experimental side:

- delicate measurement
- analogous process to positronium and hydrogen two-photon transition
- CLEO reported Upsilon(3S) \rightarrow rrUpsilon(2S)
- escaped from experimental measurement

On theoretical side:

- order α^2 QED transition between two hadrons
- similar process has been studied in heavy-light quark system
- improve understanding of heavy quarkonium characters such as spectrum, decay et al, and the strong interaction
- possibility of testing the hadron-loop effect

Introduction II

naive theoretical pictures:

Potential model:

corrections

- discrete part:
 double E-1 transition via discrete χ_{CJ} (nP)
 (n=1,2) states (virtual and real parts).
 (including main source of the background)
 (well described χ_{CJ} states)
- relativistic correction: relatively higher order v² operators

Potential model + couple channel:

• besides discrete contribution, the hadron-loop effect also may play a important role.

Theoretical study is on going. (Z.G. He et al)

BEPCII and **BESIII**

BEPCII:

• Beam energy: $1.0 \sim 2.3 \text{ GeV}$

• Luminosity: 1×10^{33} cm⁻²s⁻¹

• Optimum energy: 1.89 GeV

BESIII Spectrometer:

MDC: $\sigma(p_T)/p_T = 0.5\%$ @ 1GeV

 $dE/dx_{reso} < 6\%$

TOF: 80 ps (for bhabha, barrel)

EMC: $\sigma(E)/E = 2.3\% \times \sqrt{E}$

July 20, 2008: first e⁺e⁻ collision

event in BESIII

April 14, 2009: took ~100M $\psi(2S)$

events (~40 days)

May 29, 2009: took ~41 pb⁻¹

continuum data @3.65GeV

more in F. A. Harris's plenary talk

Dataset and Selection Criteria

Dataset:

- * ~160pb⁻¹ data taken @3.686GeV in 2009, which was estimated to contain 106 ± 4 million $\psi(2S)$ decays
- + 41 pb⁻¹ continuum data @3.65GeV in 2009

Data Selection:

$$\psi(2S) \rightarrow \gamma \gamma J/\psi, J/\psi \rightarrow ee(\mu\mu)$$

- At most 3 good photon candidates
 - EMC energy threshold: E>0.025GeV(barrel), E>0.050GeV(Endcap)
 - EMC TDC time window (0, 14)
- energy less than 0.9GeV
- nearest angle to charged tracks: $d_{angle}>10^{\circ}$
- Only one good-lepton-pair candidate
 - closest approach to interaction point: less than 1cm in x-y plane and less than 10cm in z-axis
 - energy deposit in EMC: $E_{\text{deposit}}/P < 0.6 \text{ (muon)}, E_{\text{deposit}}/P > 0.7 \text{(electron)}$
 - lepton momentum: 0.8 GeV/c < P < 2.0 GeV/c
- Only the $\gamma \gamma ll$ combination with least χ^2 of 4-momentum-constrain kinematic fit will be kept: $\chi^2 < 60$

Photons

definition:

- γ_1 higher energy photon
- γ_2 lower energy photon

PHSP signal: plotted with the assumption of

$$Br(\psi(2S) \to \gamma \gamma J/\psi) = 1 \times 10^{-3}$$

further photon selections:

$$0.2 < E_{\gamma 1} < 0.54 \text{ GeV}$$

$$0.1 < E_{v2} < 0.28 \text{ GeV}$$

Scattering Plot: $M_{\gamma\gamma}$ VS $RM_{\gamma 2}$

$RM_{\gamma 2}$: Recoil Mass of lower energy photon γ_2

2010-6-10 MESON2010, Poland

Projection Plots on $M_{\gamma\gamma}$ and $RM_{\gamma2}$

- > consistent data/MC line-shapes
- \triangleright good MC description of the tails of $\chi_{CJ}/\pi^0/\eta$

J/ψ Momentum inside Box

clear enhancement from understood bkg.

 $0.30 \, \text{GeV/c} < P_{II} < 0.55 \, \text{GeV/c}$ further cut:

Dilepton Invariant Mass

understood backgrounds:

- QCD background from psi(2S) decay
- QED background from continuum data

significant enhancement around J/\psi peak

3.48 3.46 3.44

Background Components

estimated with MC Simulation and continuum data

- ✓ relative branching fractions based on PDG
- ✓ take $\psi(2S)$ decay bkg. shape and magnitude as the main background description

Signal Estimation

unbinned maximum likelihood fit with composition of three PDFs:

- **signal** (**red**): shape from phase-space-like MC simulation
- $\psi(2S)$ bkg.(blue): shape and magnitude from exclusive MC simulation
- other bkg.(green): 1st-order polynominal

Significance Estimation

floating all fitting components

significance: 12.5σ

significance: 14.3σ

Preliminary Numerical Results and Systematic Uncertainties

	ee channel	uu channel
signals	495.8±37.9	615.9±40.9
efficiency	$(7.44 \pm 0.02)\%$	$(9.92 \pm 0.02)\%$
significance	12.5σ	14.3σ
BR(ψ(2S) $\rightarrow \gamma \gamma J/\psi$)	$(1.06 \pm 0.08)) \times 10^{-3}$	$(0.99 \pm 0.07)) \times 10^{-3}$

sources of systematic uncertainties

statistically consistent

- lepton tracking
- photon detection
- photon number cut
- kinematic fit
- BRs of ψ(2S) decay bkg.
- \mathbf{Z}_{CJ} decay width uncertainties
- **bkg.** shape

- fitting range
- extrapolation from box region to full phase space
- signal MC simulation
- $\mathbf{\Psi}(2\mathbf{S})$ total number
- J/ψ decay BR
- interferences

π⁰π⁰J/ψ Background Validation

simple fit: two Guassian plus 1st-order polynominal assuming right bump comes from $\pi^0\pi^0J/\psi$ process

$$\epsilon_{ee}^{\pi^0 \pi^0 J/\psi} = 0.073 \times (1 \pm 0.0083)\%$$

BR: $(16.16 \pm 1.03)\%$

$$\epsilon_{\mu\mu}^{\pi^0\pi^0J/\psi} = 0.114 \times (1 \pm 0.0066)\%.$$

BR: $(16.73 \pm 0.76)\%$

agree well with PDG value: 16.84%

Test Enhancement in Different Box Region

$RM_{\gamma_2}(\mathrm{GeV/c^2})$	$M_{\gamma\gamma}({ m GeV/c^2})$	$Br_{ee} \ (\times 10^{-3})$	$Br_{\mu\mu} \ (\times 10^{-3})$
A (3.43, 3.49)	(0.15, 0.33)	1.17 ± 0.13	1.25 ± 0.11
B (3.43, 3.49)	(0.33, 0.51)	0.97 ± 0.10	0.79 ± 0.08
C (3.43, 3.46)	(0.15, 0.51)	0.97 ± 0.11	1.04 ± 0.08
\mathbf{D} (3.46, 3.49)	(0.15, 0.51)	1.16 ± 0.12	0.98 ± 0.10

- existence of the enhancement is robust
- variation of the measurements in different regions:
 - statistical fluctuation
 - physics mechanism of signal process
- to be included in the systematic uncertainties 2010-6-10 MESON2010, Poland

Compilation of Preliminary Systematic Uncertainties

	systematic uncertainties (%)	
	$J/\psi \to ee$	$J/\psi o \mu \mu$
lepton tracking	-0.7	+1.0
photon detection	± 1.0	± 1.0
photon number cut	+3.8	±1.0
4C KF	+1.1	+1.1
relative branching fraction	$^{+11.3}_{-11.6}$	$^{+12.5}_{-12.8}$
χ_{cJ} decay width	$^{+7.4}_{-5.2}$	$^{+10.5}_{-4.2}$
χ_{cJ} inter-interferences	-4.7	-6.1
background shape	± 0.1	± 0.1
fitting range	$^{+0.9}_{-2.8}$	-5.1
$\psi(2S)$ Total Number	$^{+7.9}_{-7.5}$	$^{+8.7}_{-8.4}$
$Br(J/\psi \to ll)$	± 1.0	± 1.0
total	+15.4	+18.6
iotai	-16.7	-17.8

big sources

- ✓ another important source, physics mechanism MC simulation of the signal process, not included yet
- ✓ possible signal- χ_{CJ} -decay interference not included

Summary

- **4** Thanks to the high-luminosity of BEPCII and high-quality BESIII data, a significant enhancement of two-photon transition of $\psi(2S)$ to J/ψ was observed for the first time in the world: significance>10σ
- **4** The branching ratio was measured at BESIII with combination of two independent channels.
- **4** Preliminary result shows:

$$Br(\psi(2S) \to \gamma \gamma J/\psi) = (1.02 \pm 0.05(\text{stat.})^{+0.19}_{-0.20}(\text{syst.})) \times 10^{-3}.$$

- **4** The MC simulation of physics mechanism of signal process is under study and is not included
- **4** Possible signal- χ_{CJ} -decay interference effect is not included

Thank You! Dziękuję! 锹锹/

Backup Slides