

Traditio et Innovatio

Investigation of *B*-meson decays into baryons with the *BABA*R detector MESON 2010

Torsten Leddig

10. June 2010

Bundesministerium für Bildung und Forschung

Why investigate *B* decays into baryons?

Physics scope

- uncover baryon production mechanisms
- searches for excited baryon resonances
- determination of baryon spins

 \Rightarrow improved theoretical understanding of baryonic *B* decays necessary

 $\mathcal{B}(B \rightarrow baryons...) = (6.8 \pm 0.6)\%$

but: only 1/7 explicitly known

The BABAR experiment

- detector at the PEP-II e^+e^- asymmetric-energy *B* Factory at SLAC
- operated from 1999 to 2008
- *B* production in the process $e^+e^-
 ightarrow \Upsilon(4S)
 ightarrow Bar{B}$
- in total $\approx 470 \times 10^6 \ B\overline{B}$ pairs

B reconstruction

• $\sqrt{s} = m(\Upsilon(4S))$ exhibits unique situation for the study of rare *B* decays \rightarrow two independent variables for signal extraction: $m_{\rm ES}$ and ΔE

- (E_B, \vec{p}_B) : 4-vector in CMS
- together with:
 - particle ID
 - event topology
 - kinematic constraints
- → good separation of signal and combinatoric background
 - limited suppression of fake signal (*peaking background*)

 $B^-
ightarrow D^0 p \overline{p} \pi^-$ arXiv:0908.2202v1 [hep-ex]

 $B o D^{(*)} p \overline{p} \; m \cdot \pi, \quad m = 0, 1, 2$ arXiv:0908.2202v1 [hep-ex]

- measurement of 10 B meson decays (6 are first observations)
- based on a data set of $455 \times 10^6 B\overline{B}$ pairs
- branching fraction results are averaged over different $D^{(*)}$ decay modes

$$\begin{split} \bar{B}^{0} &\to D^{0} p \bar{p} &= (1.02 \pm 0.04_{\text{stat}} \pm 0.05_{\text{syst}}) \times 10^{-4} \\ \bar{B}^{0} &\to D^{+} p \bar{p} \pi^{-} &= (3.32 \pm 0.10_{\text{stat}} \pm 0.27_{\text{syst}}) \times 10^{-4} \\ \bar{B}^{0} &\to D^{0} p \bar{p} \pi^{-} \pi^{+} &= (2.99 \pm 0.21_{\text{stat}} \pm 0.44_{\text{syst}}) \times 10^{-4} \\ &\cdots \end{split}$$

the high systematic uncertainty arises mainly from peaking backgroundratios of the branching fractions indicate:

$$\mathcal{B}(B \to 3 - body) < \mathcal{B}(B \to 5 - body) < \mathcal{B}(B \to 4 - body)$$

 $ar{B}^0 o \Lambda_c^+ ar{p}$ and $B^- o \Lambda_c^+ ar{p} \pi^-$

PRD 78, 112003 (2008)

- based on a data set of $383 \times 10^6 \ B\bar{B}$ pairs
- branching fraction results are averaged over five Λ⁺_c decay modes

$$\begin{split} \bar{B}^0 &\to \Lambda_c^+ \bar{p} &= (0.19 \pm 0.02_{\text{stat}} \pm 0.01_{\text{syst}} \pm 0.05_{\Lambda_c^+}) \times 10^{-4} \\ B^- &\to \Lambda_c^+ \bar{p} \pi^- &= (3.38 \pm 0.12_{\text{stat}} \pm 0.12_{\text{syst}} \pm 0.88_{\Lambda_c^+}) \times 10^{-4} \end{split}$$

• Belle already measured $\bar{B}^0 \to \Lambda_c^+ \bar{p} \pi^- \pi^+$ (Physical Review D 75, 011101(R))

$$B^{-} \rightarrow \Lambda_{c}^{+} \overline{p} \pi^{-} \pi^{+} = (11.2 \pm 1.4_{\text{stat+syst}} \pm 2.9_{\Lambda_{c}^{+}}) \times 10^{-4}$$

$$B^{-} \rightarrow \Lambda_{c}^{+} \overline{p} \pi^{-} \pi^{+} (\text{nonresonant}) = (6.4 \pm 1.0_{\text{stat+syst}} \pm 1.7_{\Lambda_{c}^{+}}) \times 10^{-4}$$

Theoretical/Phenomenological explanation

no strict theoretical predictions

- several phenomenological ideas are on the market, e.g.
 - Wei-Shu Hou and A. Soni
 arXiv:hep-ph/0008079v1
 - Mahiko Suzuki arXiv:hep-ph/0609133v3

General idea

baryon production favored if baryon and anti-baryon recoil against one or more mesons, leptons

\Rightarrow invariant baryon anti-baryon mass should show an enhancement

Invariant baryon anti-baryon mass

 $B^- \to \Lambda_c^+ \overline{p} \pi^-$

• separation of signal and bkg achieved with the *sP*lot formalism

NIM A 555, 356 (2005)

- resulting distribution divided by phase space expectation
- consistent with enhancement seen in other analyses

arXiv:0908.2202v1 [hep-ex]

PRD 80, 051105(R) (2009); PoS(EPS-HEP 2009)215

T. Leddig (Uni Rostock)

Resonances

branching fraction measurements → high multiplicities are preferred
 e.g. for B → D^(*)pp̄ m ⋅ π:

$$\mathcal{B}(B \to 3 - body) < \mathcal{B}(B \to 5 - body) < \mathcal{B}(B \to 4 - body)$$

can be explained by threshold enhancement (partly)

$$B^{-} \rightarrow \Lambda_{c}^{+} \overline{p} \pi^{-} = (3.38 \pm 0.12_{\text{stat}} \pm 0.12_{\text{syst}} \pm 0.88_{\Lambda_{c}^{+}}) \times 10^{-4}$$

$$B^{-} \rightarrow \Lambda_{c}^{+} \overline{p} \pi^{-} \pi^{+} = (11.2 \pm 1.4_{\text{stat+syst}} \pm 2.9_{\Lambda_{c}^{+}}) \times 10^{-4}$$

$$B^{-} \rightarrow \Lambda_{c}^{+} \overline{p} \pi^{-} \pi^{+} (\text{nonresonant}) = (6.4 \pm 1.0_{\text{stat+syst}} \pm 1.7_{\Lambda_{c}^{+}}) \times 10^{-4}$$

ightarrow resonant subdecays have to be considered

$\Sigma_c(2455)^0$ in $B^- \to \Lambda_c^+ \overline{p} \pi^-$

• fit results compatible with PDG values

• influence of $B^- \to \Sigma_c^0 \overline{p}$ on $\mathcal{B}(B^- \to \Lambda_c^+ \overline{p} \pi^-)$:

$$\frac{\mathcal{B}(B^- \to \Sigma_c (2455)^0 \overline{p})}{\mathcal{B}(B^- \to \Lambda_c^+ \overline{p} \pi^-)} = (12.3 \pm 1.2_{\text{stat}} \pm 0.8_{\text{syst}}) \times 10^{-2}$$

Spin measurement of $\Sigma_c(2455)^0$

- in the quark model the $\Sigma_c(2455)$ is expected to have spin- $\frac{1}{2}$
- \rightarrow helicity analysis of $B^- \rightarrow \Sigma_c (2455)^0 \overline{p}$, $\Sigma_c (2455)^0 \rightarrow \Lambda_c^+ \pi^-$
 - helicity angle θ_h between momentum vector of Λ_c^+ and \overline{p} in $\Sigma_c(2455)^0$ rest frame

- distribution consistent with spin- $\frac{1}{2}$ hypothesis
- excludes spin- $\frac{3}{2}$ at $> 4\sigma$ level

$\Sigma_c(2800)$ resonance (?)

- Belle observed a resonance at 2.802 GeV/ c^2 in continuum ($e^+e^- \rightarrow c\overline{c}$) events
- $B^- \to \Lambda_c^+ \overline{p} \pi^-$ analysis found resonance near 2.8 GeV/ c^2

Fit Parameter	BABAR	Belle		
m (GeV/ c^2)	2.846 ± 0.008	$2.802\substack{+0.004 \\ -0.007}$		
Г (MeV)	86^{+33}_{-22}	61^{+28}_{-18}		
$ ightarrow$ mass differs by 3σ (assuming Gaussian statistics)				

$\Sigma_c(2800)$ resonance(s)

- do we observe an orbitally excited $\Sigma_c(2800)$?
- ightarrow Do we see other mass states as well?

 $ar{B}^0
ightarrow \Lambda_c^+ \overline{p} K^- \pi^+$ prd 80, 051105(r) (2009)

no conclusive statement can be made here (statistics too low)

New resonance X(1500)?

• in $B \to D^{(*)} p \bar{p} \pi^-$ we found a narrow resonance X(1500) in $m(p\pi^-)$

- background description taken from $m(\bar{p}\pi^-)$
- signal described by a Breit Wigner

•
$$m = (1497.4 \pm 3.0 \pm 0.9) \,\mathrm{MeV}/c^2$$

• $\Gamma = (47 \pm 12 \pm 4) \, \text{MeV}$

Summary

- measurements suggest that high multiplicities are preferred
- spin of the $\Sigma_c(2455)^0$ resonance could be determined to be 1/2
- possible observation of an orbitally excited $\Sigma_c(2800)$
- possible new baryon resonance X(1500) observed

 \Rightarrow baryonic *B* decays interesting from several points of view

Outlook

- independent confirmation of the baryon resonance X(1500)
- further studies of orbitally excited $\Sigma_c(2800)$ states

Ongoing analyses at *BABA*? and Belle and future *B* factories will investigate the dynamic properties of baryonic *B* decays

Backup slides

$\mathcal{B}(B \rightarrow baryons \ldots)$

- measured by the ARGUS experiment²
- determine number of events with:
 - a reconstructed proton
 - a reconstructed \varLambda
 - the combination $p\bar{p}$ and Λp
 - various lepton-baryon and lepton-baryon-anti baryon combinations
 - \Rightarrow 12 equations with 5 unknowns
- determine all 5 unknowns by a fit

 $\Rightarrow \mathcal{B}(B \rightarrow baryons ...) = (6.8 \pm 0.5_{stat} \pm 0.3_{syst})\%$

²H. Albrecht et al., ARGUS Koll., Z. Phys. C 56 1 (1992)

The BABAR detector

B decay	$\mathcal{B} \pm \sigma_{\text{stat}} \pm \sigma_{\text{syst}}$ (10 ⁻⁴)
$ar{B}^0 o D^0 p \overline{p}$	$1.02 \pm 0.04 \pm 0.05$
$ar{B}^0 o D^{*0} p \overline{p}$	$0.97 \pm 0.07 \pm 0.09$
$ar{B}^0 ightarrow D^+ p \overline{p} \pi^-$	$3.32 \pm 0.10 \pm 0.27$
$ar{B}^0 ightarrow D^{*+} p \overline{p} \pi^-$	$4.55 \pm 0.16 \pm 0.37$
$B^- ightarrow D^0 p \overline{p} \pi^-$	$3.72 \pm 0.11 \pm 0.23$
$B^- \to D^{*0} p \overline{p} \pi^-$	$3.73 \pm 0.17 \pm 0.39$
$ar{B}^0 ightarrow D^0 p \overline{p} \pi^- \pi^+$	$2.99 \pm 0.21 \pm 0.44$
$ar{B}^0 ightarrow D^{*0} p \overline{p} \pi^- \pi^+$	$1.91 \pm 0.36 \pm 0.29$
$B^- \rightarrow D^+ p \overline{p} \pi^- \pi^-$	$1.66 \pm 0.13 \pm 0.27$
$B^- ightarrow D^{*+} p \overline{p} \pi^- \pi^-$	$1.86 \pm 0.16 \pm 0.18$

$B \rightarrow D^{(*)} p \overline{p} \ m \cdot \pi$, m = 0, 1, 2 - systematics

Item	Source description	% of \mathcal{B}
Ι	$B\overline{B}$ counting	1.1
II.1	Branching fraction of $\Upsilon(4S)$	1.6
II.2	Branching fraction of $D \to K\pi$, $K\pi\pi^0$, $K\pi\pi\pi$, $K\pi\pi$	1.8, 4.4, 3.2, 3.6, resp.
II.3	Branching fraction of $D^* \rightarrow D^0 \pi^0$, $D^0 \pi^+$	4.7, 0.7, resp.
III.1	Efficiency of finding charged tracks not including soft pions	0.5 per track
III.2	Efficiency of finding soft charged pions from D^{*+}	3.1 per π
III.3	Efficiency of finding neutral pions	3.0 per π^0
III.4	Efficiency of finding B decays in bins of $m^2(p\overline{p})$ and $m^2(D^{(*)}p)$	0.8 to 9.7
III.5	Efficiency of finding kaons in B decays	0.5 per K
III.6	Efficiency of finding protons in B decays	1.0 per p
III.7	Efficiency of particle identification based on data control samples	1.5 to 2.5
IV.1	Pdf parameter variation for modes with $D \rightarrow K\pi$, $K\pi\pi^0$, $K\pi\pi\pi$, $K\pi\pi$	1.3, 2.8, 5.7, 3.4, resp.
IV.2	Pdf choice for signal events	0.6
IV.3	Pdf choice for background events for $D \to K\pi$, $K\pi\pi^0$, $K\pi\pi\pi$, $K\pi\pi$	0.8, 4.5, 1.3, 2.0, resp.
IV.4	Pdf yield bias by fitting mock experiments embedded with MC	0.4 to 2.2
V.1	Peaking background in $m_{\rm ES}$ - ΔE	8.0 for $D^{*0}p\overline{p}\pi$
V.2	Peaking background in $m_{\rm ES}$ only $(D^{(*)0}p\overline{p}\pi\pi, K\pi\pi^0 \text{ and } D^{(*)0}p\overline{p}\pi\pi, K\pi\pi\pi)$	0.0 to 14.5 (77 to 85)
V.3	Peaking background from identical final states without a ${\cal D}$ meson	0.5 to 13.5

Theoretical/Phenomenological explanation

- branching fraction results suggest that:
 - multplicity of 4 seems to be preferred
 - two-body baryonic B decays are suppressed
- phenomenological explanation given by:
 - Mahiko Suzuki arXiv:hep-ph/0609133v3

• the gluon has to be highly off mass shell ightarrow suppressed

the gluon is close to the mass shell

- invented for the separation of different event species (N_s)
- define fit function f with components for each species
- calculate a weight for each event e for species n

$$_{s}\mathcal{P}_{n}(\vec{y}_{e}) = rac{\sum_{j=1}^{N_{s}} \mathbf{V}_{nj} f_{j}(\vec{y}_{e})}{\sum_{k=1}^{N_{s}} N_{k} f_{k}(\vec{y}_{e})}$$

- V is the covariance matrix for the yields of the different species
- weights can be used to plot every distribution (not correlated with y
) for each species