Diffractive and Coulomb Dissociation of pions into three charged pions at low momentum transfer at COMPASS

Stefanie Grabmüller for the COMPASS collaboration

Physik Department E18
Technische Universität München

11th International Workshop on Meson Production, Properties and Interaction
KRAKÓW, POLAND
10 - 15 June 2010

supported by: Maier-Leibnitz-Labor der TU und LMU München,
Excellenzcluster: Origin and Structure of the Universe, BMBF

Extraction of Primakoff Signal

Partial Wave Analysis Results

Summary and Outlook
Motivation for Analysis

Meson spectrum at low momentum transfer
- Two production mechanisms
- $a_2(1320)$ resonance in detail:
 - in photon-pion process $\rightarrow \Gamma(a_2(1320) \rightarrow \pi\gamma)$
 - in diffractive (pomeron) production
 - interference effect
- More radiative couplings (heavier mesons?)
- Test of ChPT at low masses (chiral diagrams)
Motivation for Analysis

Meson spectrum at low momentum transfer

- Two production mechanisms
- $a_2(1320)$ resonance in detail:
 - in photon-pion process $\rightarrow \Gamma(a_2(1320) \rightarrow \pi\gamma)$
 - in diffractive (pomeron) production
 - interference effect
- More radiative couplings (heavier mesons?)
- Test of ChPT at low masses (chiral diagrams)

Challenges and Opportunities in the light (u,d) Quark Sector

- High density of states; broad, overlapping states
- Exploit interference effects \rightarrow phase motion
- Requires high statistics, complete PS coverage

\rightarrow COMPASS can contribute significantly in the low mass region
COMPASS 2004 Pilot Hadron Run

Overview
- **COmmon Muon and Proton Apparatus for Structure and Spectroscopy**
- Located at CERN's SPS
- Fixed-target experiment
- Two-stage magnetic spectrometer
- Data taking since 2002

Second./Tert. SPS Beams
- Muons: $4 \cdot 10^7 \text{s}^{-1}$
- Hadrons: up to $2 \cdot 10^7 \text{s}^{-1}$
- E: 100-250 GeV

Physics Goals
- Nucleon spin structure
- Hadron spectroscopy
COMPASS 2004 Pilot Hadron Run

Experimental Setup

Overview
- **COmmon Muon and Proton Apparatus for Structure and Spectroscopy**
- Located at CERN's SPS
- Fixed-target experiment
- Two-stage magnetic spectrometer
- Data taking since 2002

Second./Tert. SPS Beams
- Muons: $4 \cdot 10^7 s^{-1}$
- Hadrons: up to $2 \cdot 10^7 s^{-1}$
- E: 100-250 GeV

Physics Goals
- Nucleon spin structure
- Hadron spectroscopy

Pilot Hadron Run 2004
- 190 GeV π^- beam
- Nuclear targets (Pb)
- Tracking: Silicons for vertexing
- Trigger: Multiplicity trigger, ECAL trigger

Stefanie Grabmüller (TUM E18) — Diffractive and Coulomb Dissociation of pions into 3 charged pions at low t' at COMPASS
Diffractive and Coulomb Production of Mesons

- **Diffractive**: target particle remains intact
 - → low momentum transfer
 - \(I = 0 \) Reggeon t-channel exchange

- **Primakoff**: photon exchange
 - contribution at smallest momentum transfer

- **Dissociation**: beam pion is excited to a resonance \(X^- \), which subsequently decays
 - ⇒ e.g. \(\pi^- Pb \rightarrow X^- Pb \rightarrow \pi^- \pi^- \pi^+ Pb \)

![Diffraction and Primakoff Diagram](image)

![Number of Events Graph](image)
Diffractive and Coulomb Production of Mesons

- **Diffraction**: target particle remains intact
 → low momentum transfer
 \(I = 0 \) Reggeon t-channel exchange

- **Primakoff**: photon exchange
 contribution at smallest momentum transfer

- **Dissociation**: beam pion is excited to a
 resonance \(X^- \), which subsequently decays
 ⇒ e.g. \(\pi^- \text{Pb} \rightarrow X^- \text{Pb} \rightarrow \pi^- \pi^- \pi^+ \text{Pb} \)

- Exclusive \(3\pi \) final state events

- COMPASS 2004 (few days of data taking):
 - \(\sim 4\,000\,000 \) \(3\pi \) events

Graphical Data

- **Preliminary Data**
 - \(\pi \) \(\pi \) \(\pi \) \(\pi \) final state events
 - \(\text{COMPASS 2004} \)
 - \(\pi \text{Pb} \rightarrow \pi \pi \pi^+ \text{Pb} \)
 - \(10^{-3} < t' < 10^{-2} \text{GeV}^2/c^2 \)

Stefanie Grabmüller (TUM E18) — Diffractive and Coulomb Dissociation of pions into 3 charged pions at low \(t' \) at COMPASS
Momentum transfer to target:

\[-t = -(\vec{p}_{\text{beam}} - \vec{p}(\pi^- \pi^- \pi^+))^2 \Rightarrow t' = |t| - |t|_{\text{min}}\]

with

\[|t|_{\text{min}} = \frac{(m_{3\pi}^2 - m_\pi^2)^2}{4|\vec{p}_{\text{beam}}|^2_{\text{lab}}}\]

Diffraction pattern:
Pb nucleus acts like "black disc" in optics
Momentum transfer to target:

\[-t = -(p_{\text{beam}} - p_{(\pi^- \pi^- \pi^+)}))^2 \Rightarrow t' = |t| - |t|_{\text{min}}\]

with

\[|t|_{\text{min}} = \frac{(m_{3\pi}^2 - m_{\pi}^2)^2}{4|\vec{p}_{\text{beam}}|^2_{\text{lab}}}\]

Diffraction pattern:
Pb nucleus acts like "black disc" in optics

- "Low t'": $10^{-3} \text{ (GeV/c)}^2 < t' < 10^{-2} \text{ (GeV/c)}^2$ ~ 2000000 events
- "Primakoff region": $t' < 10^{-3} \text{ (GeV/c)}^2$ ~ 1000000 events
Primakoff contribution at $t' < 10^{-3} \text{ (GeV}/c)^2$

Primakoff: $\sigma(t') \propto e^{-b_{\text{Prim}}t'}$, $b_{\text{Prim}} \approx 2000 \text{ (GeV}/c)^{-2}$ (mainly resolution)

Diffractive: $\sigma(t') \propto e^{-b_{\text{diff}}t'}$, $b_{\text{diff}} \approx 400 \text{ (GeV}/c)^{-2}$ for lead target

(Mass) spectrum of this Primakoff contribution?
⇒ Statistical subtraction of diffractive background (for bins of $m_{3\pi}$)
Basic features of the statistical subtraction

- Fit of t' spectrum with sum of both exponentials for $0 < t' < 0.006 \text{ (GeV}/c)^2$ ($0.5 < m_{3\pi} < 2.5 \text{ GeV}/c^2$)
- Subtraction of “diffractive” exponent from t' spectrum

Fit and subtraction in 3π mass bins:
- $b_{\text{Prim}} = 2050 \text{ (GeV}/c)^{-2}$ fixed
- b_{diff} as fit parameter

Primakoff contribution
Statistical subtraction separately in 40 MeV/c^2 mass bins

Integrate Primakoff contribution of the t' spectra for $t' < 10^{-3} (\text{GeV/c})^2$
Statistical subtraction separately in 40 MeV/c^2 mass bins
Integrate Primakoff contribution of the t' spectra for t' < 10^{-3} (GeV/c)^2

Events after statistical subtraction

COMPASS 2004
\(\pi^- \text{Pb} \rightarrow \pi^- \pi^+ \text{Pb} \)
\(t' < 0.001 \text{ GeV}^2/c^2 \)

Partial Wave Analysis Formalism

Isobar Model

- $J^{PC}M^\epsilon$

- Isobar model: Intermediate 2-particle decays

- Partial wave in reflectivity basis: $J^{PC}M^\epsilon[isobar]L$

- Mass-independent PWA (40 MeV/c2 mass bins): 38 waves
 Fit of angular dependence of partial waves, interferences

- Mass-dependent χ^2-fit
PWA of data with low t'

Intensity of selected waves: $0^{-+} f_0(980)\pi S$, $1^{++} 0^+ \rho \pi S$, $2^{++} 1^+ \rho \pi D$, $2^{-+} 0^+ f_2(1270)\pi S$
"Spin Totals": Sum of all contributions for given M (i.e. z-projection of J)

t'-dependent amplitudes:

Primakoff production: \[M=1: \sigma(t') \propto e^{-b_{\text{Prim}} t'} \rightarrow \text{arises at } t' \approx 0 \text{ (resolved shape!)} \]

Diffractive production: \[M=0: \sigma(t') \propto e^{-b_{\text{diff}}(m) t'} \]
\[M=1: \sigma(t') \propto t' e^{-b_{\text{diff}}(m) t'} \rightarrow \text{vanishes for } t' \approx 0 \]

Stefanie Grabmüller (TUM E18) — Diffractive and Coulomb Dissociation of pions into 3 charged pions at low t' at COMPASS
Production Phase $a_2 - a_1$ for separated t' regions

COMPASS 2004

$\pi^- \text{Pb} \rightarrow \pi \pi \pi^+ \text{Pb}$

Intensity / (40 MeV/c²)

Mass of $\pi \pi \pi^+$ System (GeV/c²)

$0.0015 < t' < 0.01 \text{ GeV}^2/c^2$

t' < 0.0005 GeV²/c²

COMPASS 2004

$\pi^- \text{Pb} \rightarrow \pi \pi \pi^+ \text{Pb}$

Phase (degrees)

$0.0015 < t' < 0.01 \text{ GeV}^2/c^2$

t' < 0.0005 GeV²/c²

$\Delta \Phi (2^{++} 1^+ \rho \pi D - 1^{++} 0^+ \rho \pi S)$

Mass of $\pi \pi \pi^+$ System (GeV/c²)
Phase $a_2 - a_1$ in detail: t' dependence

Graph 1:
- **Graph Title:** $1^{++}0^{+} \rho \pi S$
- **Data Source:** COMPASS 2004
- **Equation:** $\pi^- Pb \rightarrow \pi^+ \pi^- \pi^+ Pb$
- **Conditions:**
 - $t' < 0.02 \text{ GeV}^2/c^2$
 - $1.26 < m_{\pi^\pm} < 1.38 \text{ GeV}/c^2$
- **Plot Details:**
 - **Intensity (a.u.):** 10^6
 - **Momentum Transfer t' (GeV2/c2):** 0 to 20

Graph 2:
- **Graph Title:** $2^{++}1^{+} \rho \pi D$
- **Data Source:** COMPASS 2004
- **Equation:** $\pi^- Pb \rightarrow \pi^- \pi^+ \pi^+ Pb$
- **Conditions:**
 - $t' < 0.02 \text{ GeV}^2/c^2$
 - $1.26 < m_{\pi^\pm} < 1.38 \text{ GeV}/c^2$
- **Plot Details:**
 - **Intensity (a.u.):** 10^6
 - **Momentum Transfer t' (GeV2/c2):** 0 to 20

Graph 3:
- **Graph Title:** $\Delta \Phi (2^{++}1^{+} \rho \pi D - 1^{++}0^{+} \rho \pi S)$
- **Data Source:** COMPASS 2004
- **Equation:** $\pi^- Pb \rightarrow \pi^- \pi^+ \pi^+ Pb$
- **Conditions:**
 - $t' < 0.02 \text{ GeV}^2/c^2$
 - $1.26 < m_{\pi^\pm} < 1.38 \text{ GeV}/c^2$
- **Plot Details:**
 - **Phase (degrees):** -120 to 0
 - **Momentum Transfer t' (GeV2/c2):** 0 to 20
Theory: Phase a_2(strong+Coulomb) - a_1(strong)

Glauber model
Plot: N. Kaiser (TU München)

⇒ indicates confirmation of interference Coulomb-interaction - strong interaction
⇒ detailed studies of the nature of resonances
COMPASS 2004 hadron run (few days) using a 190 GeV π^- beam

$\pi^- Pb \rightarrow \pi^-\pi^-\pi^+ Pb$ at (very) low momentum transfer

Extraction of photo-produced contribution

PWA in mass bins and t' bins

Production phase of $a_2(1320)$ dependent on t' shows interference of contributions from Coulomb and strong interaction

Further Analysis of 3π data at low momentum transfer:

- Mass-dependent PWA:
 - Proper incorporation of Deck effect,
 - Test of chiral diagrams in threshold mass region

- Comparison with hydrogen, lead and nickel data (2009, extended spectrometer)
π⁻π⁻π⁺ mass distribution

Different t' ranges:

![Graph showing the distribution of $\pi^-\pi^-\pi^+$ masses with different t' ranges.](image)

- **COMPASS 2004**

Ranges in t' (GeV2/c2):
- Yellow: all t'
- Blue: $t' < 10^{-3}$
- Red: $10^{-3} < t' < 10^{-2}$
- Green: $10^{-2} < t' < 10^{-1}$
- Cyan: $0.1 < t' < 1$
- Magenta: $t' > 1 [x5]$
BACKUP: Partial Wave Analysis Formalism

- **Mass-independent PWA** (narrow mass bins):
 \[
 \sigma_{\text{indep}}(\tau, m, t') = \sum_{\epsilon=\pm 1} \sum_{r=1}^{N_r} \left| \sum_i T_{ir}^\epsilon f_i^\epsilon(t') \psi_i^\epsilon(\tau, m) \right|^2 \frac{\int f_i^\epsilon(t') |^2 dt' \sqrt{\int |\psi_i^\epsilon(\tau', m)|^2 d\tau'}}{\int |f_i^\epsilon(t')|^2 dt'}
 \]

 - Production strength assumed constant in single bins
 - Decay amplitudes \(\psi_i^\epsilon(\tau, m) \), with \(t' \) dependence \(f_i^\epsilon(t') \)
 - Production amplitudes \(T_{ir}^\epsilon \rightarrow \) Extended log-likelihood fit
 - Acceptance corrections included

- **Spin-density matrix**: \(\rho_{ij}^\epsilon = \sum_r T_{ir}^\epsilon T_{jr}^\epsilon * \)

 → Physical parameters:
 \[
 \text{Intens}_i^\epsilon = \rho_{ii}^\epsilon,
 \text{relative phase } \Phi_{ij}^\epsilon,
 \text{Coh}_{i,j}^\epsilon = \sqrt{\left(\text{Re} \rho_{ij}^\epsilon \right)^2 + \left(\text{Im} \rho_{ij}^\epsilon \right)^2} / \sqrt{\rho_{ii}^\epsilon \rho_{jj}^\epsilon}
 \]

- **Mass-dependent \(\chi^2 \)-fit** (not presented here):
 - \(X \) parameterized by Breit-Wigner (BW) functions
 - Background can be added
Meson Spectroscopy at COMPASS (2004) Extraction of Primakoff Signal Partial Wave Analysis Results Summary and Outlook

BACKUP: Mesons and Spin-Exotic States

Constituent Quark Model
- Color-neutral $q\bar{q}$ systems
- Quantum numbers $I^G J^{PC}$
- $P = (-1)^{L+1}$ \[C = (-1)^{L+S} \]
- J^{PC} Multiplets: $0^{++}, 0^{--}, 1^{--}, 1^{++}, 1^{++}, 2^{++}, ...$
- Forbidden: $0^{+-}, 1^{++}, 2^{+-}, 3^{++}, ...$

QCD: Additional color-neutral objects
- Tetraquarks $(q\bar{q})(q\bar{q})$
- Hybrids $(q\bar{q})g$ $(\pi_1(1400), \pi_1(1600))$
- Glueballs gg $(f_0(1500))$

Spin Exotic States
- J^{PC} forbidden \Rightarrow cannot be a $q\bar{q}$ state
- No mixing with quark model states

\Rightarrow COMPASS