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The vast majority of the mass of ordinary matter

ultimate (Higgs or alternative) mechanism: responsible for
the mass of the leptons and for the mass of the quarks

interestingly enough: just a tiny fraction of the visible mass
(such as stars, the earth, the audience, atoms)
electron: almost massless, ≈1/2000 of the mass of a proton
quarks (in ordinary matter): also almost massless particles

the vast majority (about 95%) comes through another mechanism
=⇒ this mechanism and this 95% will be the main topic of this talk

quantum chromodynamics (QCD, strong interaction) on the lattice

Z. Fodor Light hadron spectrum from lattice QCD [N(939)]
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Lattice field theory

systematic non-perturbative approach (numerical solution):

quantum fields on the lattice

quantum theory: path integral formulation with S=Ekin-Epot

quantum mechanics: for all possible paths add exp(iS)
quantum fields: for all possible field configurations add exp(iS)

Euclidean space-time (t=iτ ): exp(-S) sum of Boltzmann factors

we do not have infinitely large computers⇒ two restrictions

a. put it on a space-time grid (proper approach: asymptotic freedom)
formally: four-dimensional statistical system
b. finite size of the system (can be also controlled)

⇒ stochastic approach, with reasonable spacing/size: solvable

Z. Fodor Light hadron spectrum from lattice QCD [N(939)]



Introduction Hadron spectrum Conclusions

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

x

y

t

fine lattice to resolve the
structure of the proton (<∼0.1 fm)
few fm size is needed
50-100 points in ‘xyz/t’ directions
a⇒a/2 means 100-200×CPU

mathematically
109 dimensional integrals

advanced techniques,
good balance and
several Tflops are needed

Z. Fodor Light hadron spectrum from lattice QCD [N(939)]
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Lattice Lagrangian: gauge fields

U (x+e )µΨ (x)

a

µ

Plaquette

µνP

µ

ν

L = −1
4F a

µνF aµν + ψ̄(Dµγ
µ + m)ψ

anti-commuting ψ(x) quark fields live on the sites
gluon fields, Aa

µ(x) are used as links and plaquettes

U(x , y) = exp (igs
∫ y

x dx ′µ Aa
µ(x ′)λa/2)

Pµν(n) = Uµ(n)Uν(n + eµ)U†µ(n + eν)U†ν(n)

S = Sg + Sf consists of the pure gluonic and the fermionic parts

Sg = 6/g2
s ·
∑

n,µ,ν [1− Re(Pµν(n))]

Z. Fodor Light hadron spectrum from lattice QCD [N(939)]
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Lattice Lagrangian: fermionic fields

quark differencing scheme:

ψ̄(x)γµ∂µψ(x)→ ψ̄nγ
µ(ψn+eµ − ψn−eµ)

ψ̄(x)γµDµψ(x)→ ψ̄nγ
µUµ(n)ψn+eµ + ...

fermionic part as a bilinear expression: Sf = ψ̄nMnmψm
we need 2 light quarks (u,d) and the strange quark: nf = 2 + 1

(complication: fermion doubling⇒ staggered/Wilson)

Euclidean partition function gives Boltzmann weights

Z =

∫ ∏
n,µ

[dUµ(x)][dψ̄n][dψn]e−Sg−Sf =
∫ ∏

n,µ

[dUµ(n)]e−Sg det(M[U])

Z. Fodor Light hadron spectrum from lattice QCD [N(939)]
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Historical background

1972 Lagrangian of QCD (H. Fritzsch, M. Gell-Mann, H. Leutwyler)

1973 asymptotic freedom (D. Gross, F. Wilczek, D. Politzer)
at small distances (large energies) the theory is “free”

1974 lattice formulation (Kenneth Wilson)
at large distances the coupling is large: non-perturbative

Nobel Prize 2008: Y. Nambu, & M. Kobayashi T. Masakawa

spontaneous symmetry breaking in quantum field theory
strong interaction picture: mass gap is the mass of the nucleon

mass eigenstates and weak eigenstates are different

Z. Fodor Light hadron spectrum from lattice QCD [N(939)]
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Scientific Background on the Nobel Prize in Physics 2008

“Even though QCD is the correct theory for the strong interactions, it
can not be used to compute at all energy and momentum scales ...
(there is) ... a region where perturbative methods do not work for
QCD.”

true, but the situation is somewhat better: new era
fully controlled non-perturbative approach works (took 35 years)

Z. Fodor Light hadron spectrum from lattice QCD [N(939)]
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Importance sampling

Z=
∫ ∏

n,µ

[dUµ(n)]e−Sg det(M[U])

we do not take into account all possible gauge configuration

each of them is generated with a probability ∝ its weight

importance sampling, Metropolis algorithm:
(all other algorithms are based on importance sampling)

P(U → U ′) = min
[
1,exp(−∆Sg) det(M[U ′])/det(M[U])

]
gauge part: trace of 3×3 matrices (easy, without M: quenched)
fermionic part: determinant of 106 × 106 sparse matrices (hard)

more efficient ways than direct evaluation (Mx=a), but still hard
Z. Fodor Light hadron spectrum from lattice QCD [N(939)]
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Hadron spectroscopy in lattice QCD

Determine the transition amplitude between:
having a “particle” at time 0 and the same “particle” at time t
⇒ Euclidean correlation function of a composite operator O:

C(t) = 〈0|O(t)O†(0)|0〉

insert a complete set of eigenvectors |i〉

=
∑

i〈0|eHt O(0) e−Ht |i〉〈i |O†(0)|0〉 =
∑

i |〈0|O†(0)|i〉|2 e−(Ei−E0)t ,

where |i〉: eigenvectors of the Hamiltonian with eigenvalue Ei .

and O(t) = eHt O(0) e−Ht .

t large ⇒ lightest states (created by O) dominate: C(t) ∝ e−M·t

t large ⇒ exponential fits or mass plateaus Mt=log[C(t)/C(t+1)]

Z. Fodor Light hadron spectrum from lattice QCD [N(939)]
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Quenched results

QCD is 35 years old⇒ properties of hadrons (Rosenfeld table)

non-perturbative lattice formulation (Wilson) immediately appeared
needed 20 years even for quenched result of the spectrum (cheap)
instead of det(M) of a 106×106 matrix trace of 3×3 matrices

always at the frontiers of computer technology:
GF11: IBM "to verify quantum chromodynamics" (10 Gflops, ’92)
CP-PACS Japanese purpose made machine (Hitachi 614 Gflops, ’96)
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Ω

the ≈10% discrepancy was believed to be a quenching effect
Z. Fodor Light hadron spectrum from lattice QCD [N(939)]
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Difficulties of full dynamical calculations

though the quenched result is qualitatively correct
uncontrolled systematics⇒ full “dynamical” studies
by two-three orders of magnitude more expensive (balance)
present day machines offer several hundreds of Tflops

no revolution but evolution in the algorithmic developments
Berlin Wall ’01: it is extremely difficult to reach small quark masses:

Z. Fodor Light hadron spectrum from lattice QCD [N(939)]
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hadron masses (and other questions) many results in the literature

JLQCD, PACS-SC (Japan), MILC (USA), QCDSF (Germany-UK),
RBC & UKQCD (USA-UK), ETM (Europe), Alpha(Europe)
JLAB (USA), CERN-Rome (Swiss-Italian)

note, that all of them neglected one or more of the ingredients
required for controlling all systematics (it is quite CPU-demanding)

=⇒ Budapest-Marseille-Wuppertal (BMW) Collaboration
supercomputers: Jugene at Juelich (Idris at CNRS)

try to control all systematics: Science 322:1224-1227,2008
A. Kronfeld, Science 322:1198-1199,2008
F. Wilczek, Nature 456:449-450,2008: Mass by numbers (balance)

http://www.bmw.uni-wuppertal.de

Z. Fodor Light hadron spectrum from lattice QCD [N(939)]
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Ingredients to control systematics

inclusion of det[M] with an exact nf =2+1 algorithm
action: universality class is known to be QCD (Wilson-quarks)
spectrum: light mesons, octet & decuplet baryons (resonances)
(three of these fix the averaged mud , ms and the cutoff)
large volumes to guarantee small finite-size effects
rule of thumb: MπL>∼4 is usually used (correct for that)
controlled interpolations & extrapolations to physical ms and mud
(or eventually simulating directly at these masses)
since Mπ'135 MeV extrapolations for mud are difficult
CPU-intensive calculations with Mπ reaching down to ≈200 MeV
controlled extrapolations to the continuum limit (a→ 0)
calculations are performed at no less than 3 lattice spacings

Z. Fodor Light hadron spectrum from lattice QCD [N(939)]
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Parameters of the Lagrangian

three parameters of the Lagrangian: coupling strength g, mud and ms

asymptotic freedom: for large cutoff (small lattice spacing) g is small
in this region the results are already independent of g (scaling)

QCD predicts only dimensionless combinations (e.g. mass ratios)
⇒ we can eliminate g as an input parameter by taking ratios

the pion mass Mπ is particularly sensitive to mud
the kaon mass MK is particularly sensitive to ms

relatively easy to set the strange quark mass ms to its physical value
it is very CPU demanding to approach the physical mud

Z. Fodor Light hadron spectrum from lattice QCD [N(939)]
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Scale setting, dimensionless ratios

QCD predicts only dimensionless combinations (e.g. mass ratios)
set the scale: one dimensionful observable (mass) can be used

practical issues: should be a mass, which can be calculated precisely
weak dependence on mud (not to strongly alter the chiral behavior)
should not decay under the strong interaction

larger the strange content, the more precise the mass determination
these facts support that the Ω baryon is a good choice

baryon decuplet masses are less precise than those of the octet
this observation suggests that the Ξ baryon is a good choice

Z. Fodor Light hadron spectrum from lattice QCD [N(939)]
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Scale setting and masses in lattice QCD:
in meteorology, aircraft industry etc. grid spacing is set by hand
in lattice QCD we use g,mud and ms in the Lagrangian (’a’ not)
measure e.g. the vacuum mass of a hadron in lattice units: MΩa
since we know that MΩ=1672 MeV we obtain ’a’
masses are obtained by correlated fits (choice of fitting ranges)
illustration: mass plateaus at our smallest Mπ ≈190 MeV (noisiest)

4 8 12
t/a

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

a 
M

K

N

volumes and masses for unstable particles: avoided level crossing
decay phenomena included: in finite V shifts of the energy levels
⇒ decay width (coupling) & masses of the heavy and light statesZ. Fodor Light hadron spectrum from lattice QCD [N(939)]
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Two types of finite volume effects: type I

usually MπL>∼4 is assumed as satisfactory: more care is needed
type I: periodic system, virtual π exchange, decreases with MπL

map the volume dependence at the Mπ≈320 MeV point
self-consistent analysis with volumes MπL≈3.5 to 7
MX (L) = MX + cX (Mπ) · exp(−MπL)/(MπL)3/2 describes the data
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MpL=4 Nucleon
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Type II finite volume effect: resonance states

parameters, for which resonances would decay at V=∞
at V=∞ the lowest energy state is a two-particle scattering state
hypothetical case with no coupling⇒ level crossing as V increases
realistic case: non-vanishing decay width⇒ avoided level crossing

E E

scattering state

bound state

ground state

excited state

level crossingavoidedlevel crossing 

L L
M. Luscher, Nucl. Phys. B364 (1991) 237

self-consistent analysis: width is an unknown quantity and we fit it
Z. Fodor Light hadron spectrum from lattice QCD [N(939)]
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Approach physical masses & the continuum limit

systematic analyses both for the Ξ and for the Ω sets
• two ways of normalizing the hadron masses (set the scale):
a. ratio method: QCD predicts only dimensionless quantities
use rX =MX /MΞ and parameterize it by rπ=Mπ/MΞ and rK =MK /MΞ

⇒ rX =rX (rπ,rK ) surface is an unambiguous prediction of QCD
one-dimensional slice (set 2r2

K − r2
π∝ms to its physical value: 0.27)
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Approach physical masses & the continuum limit

• two ways of normalizing the hadron masses (set the scale):

b. mass independent scale setting: more conventional way
set the lattice spacing by extrapolating MΞ to the physical point
(given by the physical ratios of Mπ/MΞ and MK/MΞ)
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Blind data analysis: avoid any arbitrariness

extended frequentist’s method:
2 ways of scale setting, 2 strategies to extrapolate to Mπ(phys)
3 pion mass ranges, 2 different continuum extrapolations
18 time intervals for the fits of two point functions
2·2·3·2·18=432 different results for the mass of each hadron

1640 1660 1680 1700 1720
M
O
   [MeV]

0.1

0.2

0.3

median

Omega

central value and systematic error is given by the mean and the width
statistical error: distribution of the means for 2000 bootstrap samples

Z. Fodor Light hadron spectrum from lattice QCD [N(939)]
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Final result for the hadron spectrum
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Summary

understanding the source and the course of the mass generation
of ordinary matter is of fundamental importance

after 35 years of work these questions can be answered
(cumulative improvements of algorithms and machines are huge)

they belong to the largest computational projects on record

perfect tool to understand hadronic processes (strong
interaction)

Z. Fodor Light hadron spectrum from lattice QCD [N(939)]
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Choice of the action

no consensus: which action offers the most cost effective approach
our choice: tree-level O(a2)-improved Symanzik gauge action

6-level (stout) or 2-level (HYP) smeared improved Wilson fermions

with tree-level O(a) clover improved fermions:

Z. Fodor Light hadron spectrum from lattice QCD [N(939)]
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Action and algorithms

action:
good balance between gauge (Symanzik improvement) and
fermionic improvements (clover and stout smearing) and CPU
gauge and fermion improvement with terms of O(a4) and O(a2)

algorithm:
rational hybrid Monte-Carlo algorithm,
Hasenbusch mass preconditioning, mixed precision techniques,
multiple time-scale integration, Omelyan integrator

parameter space:
series of nf =2+1 simulations (degenerate u and d sea quarks)
we vary mud in a range which corresponds to Mπ≈190—580 MeV
separate s sea quark, with ms at its approximate physical value
repeat some simulations with a slightly different ms and interpolate
three different β-s, which give a ≈0.125 fm, 0.085 fm and 0.065 fm

Z. Fodor Light hadron spectrum from lattice QCD [N(939)]
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Further advantages of the action

smallest eigenvalue of M: small fluctuations
⇒ simulations are stable (major issue of Wilson fermions)

non-perturbative improvement coefficient: ≈ tree-level (smearing)
R. Hoffmann, A. Hasenfratz, S. Schaefer, PoS LAT2007 (2007) 1 04

good a2 scaling of hadron masses (Mπ/Mρ=2/3) up to a≈0.2 fm
S. Dürr et al. [Budapest-Marseille-Wuppertal Collaboration] arXiv :0802.2706
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Locality properties of the action

stout smearing 6 times: should we worry about locality (2 types)?
– in continuum the proper QCD action is recovered (ultra-local)
– does one receive at a 6= 0 unwanted contributions?

type A: D(x , y)=0 for all (x , y) except for nearest neighbors
type B: dependence of D(x , y) on Uµ at distance z

0 1 2 3 4 5 6 7

|z|/a

10
-6

10
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10
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10
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10
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10
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10
0

||¶
D

(x
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)/
¶U
m(

x
+

z
) ||

a~~0.125 fm
a~~0.085 fm
a~~0.065 fm

drops exponentially to 10−6 within the ultra-locality region: OK
Z. Fodor Light hadron spectrum from lattice QCD [N(939)]
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Simulation at physical quark masses

M’s eigenvalues close to 0: CPU demanding (large condition number)
our choice of action and large volumes (6 fm):
the spread of the smallest eigenvalue decreases⇒ away from zero

we can go down to physical pion masses⇒ algorithmically safe

Blue Gene shows perfect strong scaling from 1 midplane to 16 racks
our sustained performance is as high as 37% of the peak 0.2 Pflops

Z. Fodor Light hadron spectrum from lattice QCD [N(939)]
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carry out two analyses
one with MΩ (Ω set) and one with MΞ (Ξ set)

fix the bare quark masses:
use the mass ratio pairs (Mπ/MΩ,MK/MΩ) or (Mπ/MΞ,MK/MΞ)

we calculate the hadron masses of the

baryon octet (N, Σ, Λ, Ξ)
baryon decuplet (∆, Σ∗, Ξ∗, Ω)
light pseudoscalar mesons (π, K )
vector meson (ρ, K ∗) octets

Z. Fodor Light hadron spectrum from lattice QCD [N(939)]
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Suppression of excited states

effective masses for different source types
point sources have vanishing extents
Gaussian sources have radii of approximately 0.3 fm

every tenth trajectory is used in the analysis
upto eight timeslices as sources for the correlation functions
integrated autocorrelation times for hadron propagator: ≈0.5

Z. Fodor Light hadron spectrum from lattice QCD [N(939)]
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Correlation functions, mass fits

masses are obtained by correlated fits
several fitting ranges were chosen (see later our error analysis)
illustration: mass plateaus at our smallest Mπ≈190 MeV (noisiest )
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Approach physical masses & the continuum limit

• two strategies to extrapolate to the physical pion mass:

form of the function: given by an expansion around a reference point
rX = rX (ref ) + αX [r2

π − r2
π (ref )] + βX [r2

K − r2
K (ref )] + hoc

(with higher order contributions)

a. chiral fit: conventional strategy:
reference point: r2

π (ref )=0 and r2
K (ref ) is in the middle of the r2

K range
this choice corresponds to chiral perturbation theory: hoc∝r3

π

(all coefficients left free for the analysis)

b. Taylor fit: r2
π (ref ): non-singular point in the middle of the r2

π range
all points are well within the radius of convergence of the expansion
hoc∝r4

π turned out to be sufficient

Z. Fodor Light hadron spectrum from lattice QCD [N(939)]
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Approach physical masses & the continuum limit

applicability of the chiral/Taylor expansions is not known a priori

vector mesons: hoc-s consistent with zero (include)
baryons: hoc-s are significant
two strategies⇒ differences between MX (phys)
possible contributions of yet hoc-s, not included in our fits

quantify these contributions further: take different ranges of Mπ

three ranges: all points/upto Mπ=560 MeV/upto Mπ=450 MeV

• three lattice spacings are used for continuum extrapolation
our scaling analysis showed that cutoff effects are linear in a2

however, one cannot exclude a priori a leading term linear in a
⇒ we allow for the masses both a or a2 type cutoff effects

two ways for scale setting & two strategies for mass extrapolation
three Mπ ranges & two types of cutoff effects⇒ error analysis

Z. Fodor Light hadron spectrum from lattice QCD [N(939)]
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Final result for the hadron spectrum
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Final results in GeV

X Exp. [PDG] MX (Ξ set) MX (Ω set)
ρ 0.775 0.775(29)(13) 0.778(30)(33)
K ∗ 0.894 0.906(14)(4) 0.907(15)(8)
N 0.939 0.936(25)(22) 0.953(29)(19)
Λ 1.116 1.114(15)(5) 1.103(23)(10)
Σ 1.191 1.169(18)(15) 1.157(25)(15)
Ξ 1.318 1.318 1.317(16)(13)
∆ 1.232 1.248(97)(61) 1.234(82)(81)
Σ∗ 1.385 1.427(46)(35) 1.404(38)(27)
Ξ∗ 1.533 1.565(26)(15) 1.561(15)(15)
Ω 1.672 1.676(20)(15) 1.672

isospin averaged experimental masses: members within 3.5 MeV
statistical/systematic errors in the first/second parentheses

Z. Fodor Light hadron spectrum from lattice QCD [N(939)]
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Error budget as fractions of the total systematic error

a−→0 chiral/normalization excited states finite V
ρ 0.20 0.55 0.45 0.20
K ∗ 0.40 0.30 0.65 0.20
N 0.15 0.90 0.25 0.05
Λ 0.55 0.60 0.40 0.10
Σ 0.15 0.85 0.25 0.05
Ξ 0.60 0.40 0.60 0.10
∆ 0.35 0.65 0.95 0.05
Σ∗ 0.20 0.65 0.75 0.10
Ξ∗ 0.35 0.75 0.75 0.30
Ω 0.45 0.55 0.60 0.05

Z. Fodor Light hadron spectrum from lattice QCD [N(939)]
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Finite-size scaling theory

problem with phase transitions in Monte-Carlo studies
Monte-Carlo applications for pure gauge theories (V = 243 · 4)
existence of a transition between confining and deconfining phases:
Polyakov loop exhibits rapid variation in a narrow range of β

• theoretical prediction: SU(2) second order, SU(3) first order
=⇒ Polyakov loop behavior: SU(2) singular power, SU(3) jump

data do not show such characteristics!
Z. Fodor Light hadron spectrum from lattice QCD [N(939)]
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Finite size scaling in the quenched theory

look at the susceptibility of the Polyakov-line
first order transition (Binder) =⇒ peak width ∝ 1/V, peak height ∝ V

finite size scaling shows: the transition is of first order

Z. Fodor Light hadron spectrum from lattice QCD [N(939)]
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The nature of the QCD transition

Y.Aoki, G.Endrodi, Z.Fodor, S.D.Katz, K.K.Szabo, Nature, 443 (2006) 675

finite size scaling study of the chiral condensate (susceptibility)

χ=(T/V)∂2logZ/∂m2

phase transition: finite V analyticity V→∞ increasingly singular
(e.g. first order phase transition: height ∝ V, width ∝ 1/V)
for an analytic cross-over χ does not grow with V

two steps (three volumes, four lattice spacings):
a. fix V and determine χ in the continuum limit: a=0.3,0.2,0.15,0.1fm
b. using the continuum extrapolated χmax : finite size scaling

Z. Fodor Light hadron spectrum from lattice QCD [N(939)]
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The nature of the QCD transition: result

• finite size scaling analysis with continuum extrapolated T 4/m2∆χ

the result is consistent with an approximately constant behavior
for a factor of 5 difference within the volume range
chance probability for 1/V is 10−19 for O(4) is 7 · 10−13

continuum result with physical quark masses in staggered QCD:

the QCD transition is a cross-over
Z. Fodor Light hadron spectrum from lattice QCD [N(939)]
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The nature of the QCD transition

Y.Aoki, G.Endrodi, Z.Fodor, S.D.Katz, K.K.Szabo, Nature, 443 (2006) 675

analytic transition (cross-over)⇒ it has no unique Tc :
examples: melting of butter (not ice) & water-steam transition

l

above the critical point cp and dρ/dT give different Tcs.
QCD: chiral & quark number susceptibilities or Polyakov loop
they result in different Tc values⇒ physical difference

Z. Fodor Light hadron spectrum from lattice QCD [N(939)]
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The transition temperature: results and scaling

Y. Aoki, Z. Fodor, S.D. Katz, K.K. Szabo, Phys. Lett. B. 643 (2006) 46
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Equation of state: difficulties at high temperatures

lattice results for the EoS perturbative series “converges”
extend upto a few times Tc only at asymptotically high T

applicability ranges of perturbation theory and lattice don’t overlap
it was believed to be “impossible” to extend the range for lattice QCD

Z. Fodor Light hadron spectrum from lattice QCD [N(939)]
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The standard technique is the integral method

p̄=T/V·log(Z), but Z is difficult
⇒ p̄ integral of (∂log(Z)/∂β,∂log(Z)/∂m)

substract the T=0 term, the pressure is given by:
p(T )=p̄(T )-p̄(T = 0)

back of an envelope estimate:

Tc≈150–200 MeV, mπ=135 MeV
try to reach T =20·Tc for Nt=8 (a=0.0075 fm)

⇒Ns > 4/mπ ≈ 6/Tc = 6·20/T = 6·20·Nt ≈ 1000

⇒ completely out of reach

Z. Fodor Light hadron spectrum from lattice QCD [N(939)]



Introduction Hadron spectrum Conclusions

Practical solution for the problem

G.Endrodi, Z.Fodor, S.D.Katz, K.K.Szabo, arXiv:0710.4197
a. substract successively:

p(T)=p̄(T)-p̄(T=0)= [p̄(T)-p̄(T/2)]+[p̄(T/2)-p̄(T/4)]+...

=⇒ for substractions at most twice as large lattices are needed
(physical reason: there are no new UV divergencies at finite T)

b. instead of the integral method calculate:

p̄(T)-p̄(T/2)=T/(2V)·log[Z2(Nt )/Z(2Nt )]

and introduce an interpolating partition function Z (α)

Z. Fodor Light hadron spectrum from lattice QCD [N(939)]
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define Z̄ (α)=
∫
DUexp[-αS1b-(1-α)S2b]⇒ Z2(Nt )=Z̄ (0), Z(2Nt )=Z̄ (1)

one gets directly for p̄(T)-p̄(T/2)=T/(2V)·log[Z2(Nt )/Z(2Nt )]

T/(2V)
∫ 1

0 dlog[Z̄ (α)]/dα·dα=T/(2V)
∫ 1

0 〈S1b-S2b〉α·dα

Z. Fodor Light hadron spectrum from lattice QCD [N(939)]
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long awaited link between lattice thermodynamics and pert. theory
Z. Fodor Light hadron spectrum from lattice QCD [N(939)]



Introduction Hadron spectrum Conclusions

define Z̄ (α)=
∫
DUexp[-αS1b-(1-α)S2b]⇒ Z2(Nt )=Z̄ (0), Z(2Nt )=Z̄ (1)

one gets directly for p̄(T)-p̄(T/2)=T/(2V)·log[Z2(Nt )/Z(2Nt )]

T/(2V)
∫ 1

0 dlog[Z̄ (α)]/dα·dα=T/(2V)
∫ 1

0 〈S1b-S2b〉α·dα

long awaited link between lattice thermodynamics and pert. theory
Z. Fodor Light hadron spectrum from lattice QCD [N(939)]


	Introduction
	Hadron spectrum
	Conclusions

