Precision spectroscopy of kaonic helium x-rays

For KEK-PS E570 collaboration

Hideyuki Tatsuno University of Tokyo

KEK-PS E570 collaboration

G. Beer¹, H. Bhang², M. Cargnelli³, J. Chiba⁴, S. Choi², C. Curceanu⁵, Y. Fukuda⁶, T. Hanaki⁴, R. S. Hayano⁷, M. Iio⁸, T. Ishikawa⁷, S. Ishimoto⁹, T. Ishiwatari³, K. Itahashi⁸, M. Iwai⁹, M. Iwasaki⁸, B. Juhasz³, P. Kienle³, J. Marton³, Y. Matsuda⁸, H. Ohnishi⁸, S. Okada⁸, H. Outa⁸, M. Sato⁶, P. Schmid³, S. Suzuki⁹, T. Suzuki⁸, H. Tatsuno⁷, D. Tomono⁸, E. Widmann³, T. Yamazaki⁸, H. Yim², J. Zmeskal³ Victoria Univ.¹, SNU², SMI³, TUS⁴, INFN(LNF)⁵, Tokyo Tech⁶, Univ. of Tokyo⁷, RIKEN⁸, KEK⁹

determine the strong-interaction shift with a precision of 2 eV

Kaonic helium puzzle

Theories ~0 eV

S. Hirenzaki et al, PRC61, 055205 (2000) C.J. Batty, NPA508, 89 (1990) E.Friedman (2007)

> Experiments -41 ± 8 eV

C.E. Wiegand and R.H. Pehl PRL27, 1410 (1971)
C.J. Batty et al, NPA326, 455 (1979)
S. Baird et al, NPA392, 297 (1983)

Possible large shift

coupled $\Sigma\pi$ -channel model Y. Akaishi, EXA05, p45 (2005)

optical model SU(3) chiral unitary model

Possible large shift

coupled $\Sigma\pi$ -channel model Y. Akaishi, EXA05, p45 (2005)

optical model SU(3) chiral unitary model

E570 experiment

high resolution (silicon drift detector)
low background (high S/N)
in-situ energy calibration

2. low background : stopped-kaon selection

20

Liquid helium-4 target

2. low background : stopped-kaon selection

20

reaction vertex reconstruction

iquid helium-4 target –

2. low background : stopped-kaon selection

20

reaction vertex reconstruction

stopped kaon selection

quid helium-4 target

2. low background : scopped-kaon selection

2. low background : scopped-kaon selection

2. low background kaon timing selection

coincidence events with SDDs

time resolution $\sigma = 130 \text{ ns}$

3. energy calibration

Ti and Ni *Ka* lines induced by the beam

To achieve a few eV precision

Fit functions

(1) response function of the SDD(2) Compton scattering in the target(3) pileup

Response function

SDD

Collecting Anode

n Si

collection

Externa

Amplifier

Field Rings

→ -V →

Back Contact

Fe55 source measurement

low-energy tail + flat component fraction ~3%

Compton scattering in the target

GEANT4 simulation low-energy Compton scattering package

low-energy tail fraction ~11% !

Results

S.Okada et al, PLB 653, 387, (2008)

Shift

S.Okada et al, PLB 653, 387, (2008)

The kaonic helium puzzle was resolved

Width

preparing

Preliminary result

upper limit 17 eV at 95% CL

Theories ~2 eV C.J. Batty, NPA508, 89 (1990) E.Friedman (2007)

Comparison with Akaishi's prediction

Summary

E570 results are consistent with all theoretical calculations

Kaonic helium puzzle was resolved

Unlikely large width -> remains deep potential possibility (~300 MeV) to investigate kaon-nuclear states

Backup

Kaonic helium x-rays

5d

4d

Nuclear

Absorption

strong-interaction width: Γ_{2p} 2pshift: ΔE_{2p} 2p(Coulomb only)

Past experiments

C.E. Wiegand and R.H. Pehl (1971) PRL27, 1410
C.J. Batty *et al* (1979) NPA326, 455
S. Baird *et al* (1983) NPA392, 297

Possible large shift

Akaishi's prediction : coupled $\Sigma\pi$ -channel model accommodates deeply bound kaon-nuclear states

Y. Akaishi, EXA05, p45 (2005)

Experiment KEK-PS E570 Goal determine the strong-interaction shift with a precision of 2 eV

to distinguish 0 eV with 10 eV

1. high resolution

Silicon Drift Detectors (SDDs)

produced by KETEK GmbH

small anode → small detector capacitance high resolution : 185 eV FWHM at 6.4 keV

large effective area : 100 mm²

thin detector : 0.26 mm

Outlook

eV precision is essential again ! kaonic helium-3 x-rays @ J-PARC E17