Recent Results from BESII

Xiaoyan SHEN (沈肖雁) (Representing BES Collaboration) Institute of High Energy Physics, Beijing shenxy@ihep.ac.cn

June 6 - 10, 2008, MESON2008, Cracow, Poland

Beijing Electron Positron Collider (BEPC) at IHEP

BESI: run from 1989-1998 BESII: run from 1999-2004 BESIII: will start running in July of 2008

BESII @ BEPC

BESII data samples in this talk

Data	BESII	CLEOc
J/ ψ	58 M	
ψ (2S)	14 M	27 M
ψ (3770)	33 pb ⁻¹	572 pb ⁻¹

- Y(2175)
- η(2225)→φφ
- X(1440)→KKπ
- ψ' radiative decays
- ψ " resonance parameters, non-DDbar decays

BESIII (See Fred Harris's talk)

arXiv: 0712.1143, PRL 100, 102003 (2008)

Observation of a new 1⁻⁻ resonance Y(2175) at BaBar

- A structure at 2175MeV was observed in $e^+e^- \rightarrow \gamma_{ISR} \phi f_0(980),$ $e^+e^- \rightarrow \gamma_{ISR} K^+K^-f_0(980)$ initial state radiation processes

 $M = 2175 \pm 10 \pm 15 \text{ MeV}$ $\Gamma = 58 \pm 16 \pm 20 \text{ MeV}$

FIG. 27 (color online). The $e^+e^- \rightarrow \phi(1020)f_0(980)$ cross section measured in the $K^+K^-\pi^+\pi^-$ (circles) and $K^+K^-\pi^0\pi^0$ (squares) final states. The hatched histogram shows the simulated cross section, assuming no resonant structure. The solid (dashed) line represents the result of the one-resonance (noresonance) fit described in the text.

Phys. Rev. D 74 (2006) 091103(R)

 $J/\psi \rightarrow \eta \phi f_0(980)$ at BESII

A peak around 2175 MeV/c² is observed in $J/\psi \rightarrow \eta \phi f_0(980)$

$M^{2}(\eta f_{0}(980))$ vs. $M^{2}(\eta \phi)$ (Dalitz plot)

Fit with one resonance:

Simultaneous fit to signal and sideband events with BW +p3

M =2.186 \pm 0.010 \pm 0.006 GeV/c² Γ =0.065 \pm 0.023 \pm 0.017 GeV/c² N _{events}= 52 \pm 12

Fit with two resonances

- BG shape is fixed to sideband BG
- the mass and width of the second peak are fixed to those of from BaBar.

M =2.186 \pm 0.010GeV/c² Γ = 0.065 \pm 0.022GeV/c² N₁ events= 47 \pm 14 N₂ events= 22 \pm 11

B(J/ψ → ηY(2175)B(Y(2175) → φf₀(980))B(f₀(980) → π⁺π⁻) = (2.92±0.87(*stat*))×10⁻⁴ > A resonance at 2175 MeV/c² is observed with significance ~ 5σ in $\phi f_0(980)$ mass spectrum.

	Mass (GeV/c ²)	Width (GeV/c ²)
BES	$2.186 \pm 0.010 \pm 0.006$	$0.065 \pm 0.023 \pm 0.017$
BABAR	$2.175 \pm 0.010 \pm 0.015$	$0.058 \pm 0.016 \pm 0.020$

> Branching ratio obtained:

B(J/ψ → ηY(2175)B(Y(2175) → φf₀(980))B(f₀(980) → π⁺π⁻) = (3.23±0.75(*stat*)±0.73(*syst*))×10⁻⁴

What is Y(2175)?

Some theoretical interpretations:

- A conventional $s\overline{s}$ state?
- An $S\overline{S}$ analog of Y(4260) ($S\overline{S}g$)?
- An $S\overline{S}S\overline{S}$ 4-quark state?

More experimental information needed.

η(2225) in J/ $\psi \rightarrow \gamma \phi \phi$ at BESII

 \Box A pseudoscalar signal near threshold was observed in $\phi\phi$ invariant mass spectrum by MARKIII and DM2.

□ Known as η(2225) in PDG with M= 2220±18 MeV/c² Γ= 150⁺³⁰⁰-60±60 MeV/c².

FIG. 2. The observed $\phi\phi$ invariant-mass spectra from (a) $J/\psi \rightarrow \gamma K^+ K^- K^+ K^-$ and (b) $J/\psi \rightarrow \gamma K^+ K^- K_S^0 K_L^0$; (c),(d) the corresponding $\phi\phi$ invariant-mass spectra after efficiency correction. Shaded histograms show background estimates; dashed curves show detection efficiencies denoted by ϵ ; solid curves show fits described in the text.

η (2225) in J/ $\psi \rightarrow \gamma \phi \phi$

Final states:

 $\phi_1 \rightarrow K^+K^-, \phi_2 \rightarrow K_S K_L (K_S \rightarrow \pi^+\pi^-, K_L \text{ is missing})$ 2C-fit is applied.

 $\eta(2225)$ in $J/\psi \rightarrow \gamma \phi \phi$

Near threshold enhancement observed

PWA of J/ $\psi \rightarrow \gamma \phi \phi$ at **BESII**

PWA shows the structure is dominated by a

0⁻⁺ **state**: η**(2225)** (>10 σ).

Do extra resonances exist?

	Resonance	Mass (GeV/c²)	Width (GeV/c ²)	Num. of events	Sign.
0-+0-	η (2225)	2.28 ^{+0.02} _{-0.02}	0.18 ^{+0.04} -0.04	323.3 ^{+21.9} -22.9	>10 σ
	extra 0 ⁻	2.36 ^{+0.02} -0.03	0.07 ^{+0.11} _{-0.05}	31.2 ^{+13.1} -12.5	0.8 σ
0 ⁻ +0 ⁺	η (2225)	2.25 ^{+0.01} -0.01	0.19 ^{+0.04} -0.02	199.6 ^{+18.4} -18.5	>10 σ
	extra 0+	2.01 ^{+0.08} -0.11	0.14 ^{+0.17} _{-0.10}	23.8 ^{+10.4} -9.1	2.1 σ
0 ⁻ +2 ⁺	η (2225)	2.24 ^{+0.01} -0.02	0.23 ^{+0.04} -0.02	204.2 ^{+20.9} -18.6	>10 σ
	extra 2 ⁺	2.25 ^{+0.02} -0.01	0.05 ^{+0.04} -0.02	47.0 ^{+9.8} -11.3	3.3 σ

Resonance parameters of a pseudoscalar:

 $m = 2.24^{+0.03+0.03}_{-0.02-0.02} \text{ GeV}$ $\Gamma = 0.19 \pm 0.03^{+0.06}_{-0.04} \text{ GeV}$ $B(J/\psi \to \gamma \eta (2225))B(\eta (2225) \to \gamma \phi \phi)$ $= (4.4 \pm 0.4 \pm 0.8) \times 10^{-4}$

PDG value: M=2.220 \pm 0.018 GeV/c²; Γ = 0.150 $^{+0.300}$ $_{-0.060}$ \pm 0.060 GeV/c²; Br: (2.9 \pm 0.6) \times 10⁻⁴

$\eta(2225)$ in J/ $\psi \rightarrow \gamma \phi \phi$

Ε/ι(1440), η**(1405)**, η**(1475)**

- One structure (E/1(1440)) near 1.44 GeV, may due to two states, one couples to a(980) π and KK π , the other couples to K^{*}K.
- Masses, widths and decay modes are not well measured.
- Radial excited η or η' state? Glueball?
- J/ψ decays:
 - J/ψ→γX(1440)→ γ KKπ, γ ηππ
 - · $J/\psi \rightarrow \omega/\phi X(1440) \rightarrow \omega/\phi KK\pi$
 - $J/\psi \rightarrow \omega/\phi \times (1440) \rightarrow \omega/\phi \eta \pi \pi$

PRD77, 032005 (2008)

(this talk)

X(1440) in $J/\psi \rightarrow \omega + KK\pi$

Final states: $ω \rightarrow π^+ π^- π^0$, KKπ=K_SKπ

X(1440) in $J/\psi \rightarrow \omega + KK\pi$

Final states: $ω \rightarrow π^+ π^- π^0$, KKπ=K⁺K⁻π⁰

X(1440) in J/ $\psi \rightarrow \phi + KK\pi$

• Final states: $\phi \rightarrow K^+K^-$, $KK\pi = K_SK\pi$

X(1440) in J/ $\psi \rightarrow \phi + KK\pi$

• Final states: $\phi \rightarrow K^+K^-$, $KK\pi = K^+K^-\pi^0$

X(1440) in $J/\psi \rightarrow \omega/\phi + KK\pi$

TABLE V. The mass, width, and branching fractions of J/ψ decays into $\{\omega, \phi\}X(1440)$.

$$\begin{split} J/\psi &\to \omega X(1440) & J/\psi \to \omega X(1440) \\ (X \to K_S^0 K^+ \pi^- + \text{c.c.}) & (X \to K^+ K^- \pi^0) \\ M &= 1437.6 \pm 3.2 \text{ MeV}/c^2 & M = 1445.9 \pm 5.7 \text{ MeV}/c^2 \\ \Gamma &= 48.9 \pm 9.0 \text{ MeV}/c^2 & \Gamma = 34.2 \pm 18.5 \text{ MeV}/c^2 \\ B(J/\psi \to \omega X(1440) \to \omega K_S^0 K^+ \pi^- + \text{c.c.}) &= (4.86 \pm 0.69 \pm 0.81) \times 10^{-4} \\ B(J/\psi \to \omega X(1440) \to \omega K^+ K^- \pi^0) &= (1.92 \pm 0.57 \pm 0.38) \times 10^{-4} \\ B(J/\psi \to \phi X(1440) \to \phi K_S^0 K^+ \pi^- + \text{c.c.}) &< 1.93 \times 10^{-5} (90\% \text{ C.L.}) \\ B(J/\psi \to \phi X(1440) \to \phi K^+ K^- \pi^0) &< 1.71 \times 10^{-5} (90\% \text{ C.L.}) \end{split}$$

- B(ωX)/B(φX)>20! X(1440) couples to ω much stronger than to φ
- More statistics is needed to determine whether there are 2 structures or only one.

Observation of a strong enhancement near the threshold of $K^-\overline{\Lambda}$ mass spectrum at BES II

• **Best PWA fit:** $(J^{P}=1/2^{-1})$ is favored)

$$m = 1625^{+5+13}_{-7-23}MeV$$
 $\Gamma = 43^{+10+28}_{-7-11}MeV$

 $Br(J/\psi \to pNx) \times Br(Nx \to K\Lambda) = 9.14^{+1.30+4.25}_{-1.25-8.28} \times 10^{-5}$

• Fitted as N(1535) (becomes worse by about $5 \sigma (\Delta \chi^2 = 28 \text{ with } d.o.f.=2)$).

 $Br(J/\psi \rightarrow pN(1535)) \times Br(N(1535) \rightarrow K\Lambda) = 4.26^{+0.15+4.22}_{-0.14-1.70} \times 10^{-4}$

N_x* is N(1535)?

From BESII measurements:

 $BR(J/\psi \to pN(1535)) \bullet BR(N(1535) \to p\pi) \sim (1 \sim 2) \times 10^{-4}$

 $BR(J/\psi \rightarrow pN(1535)) \bullet BR(N(1535) \rightarrow K\Lambda) \sim 4 \times 10^{-4}$

If N_x^* is N(1535), its coupling to KA is much stronger than to $p\pi$.

Then N(1535) would have very large ssbar component (a 5-quark system).

$J/\psi \to n K^0_S \overline{\Lambda}~~$ at BESII

Phys. Lett. B659, 789 (2008)

An enhancement near ΛK_s threshold is evident

ψ ' radiative decays

- Only limited modes measured by BESI
 - γη, γη' [PRD58, 097101 (1998)]
 - γKK, γππ [PRD67, 032004 (2003)]
- Try to measure more modes
- B(ψ'→γ+X)
 - 2-prong: π⁺π⁻, K⁺K⁻, ppbar, ηπ⁺π⁻
 - 4-prong:2(π⁺π⁻), π⁺π⁻K⁺K⁻, π⁺π⁻ppbar, 2(K⁺K⁻), K_SK⁺π⁻+c.c.
 - 6-prong: 3(π⁺π⁻), 2(π⁺π⁻)K⁺K⁻
- Published in
 - PRL99, 011802 (2007)
 - PRD74, 072001 (2006)

Observation of ψ ' radiative decays

- Expected 1% BR, but only 0.05% observed.
- Potential channels for hadron spectroscopy study, including search for non-qqbar states, provided statistics is enough (BESIII?).
- ~ 0.1% more observed in this analysis.

Mode	BR (×10 ⁻⁵)
	[m<2.9 GeV/c ²]
γ pp-bar	$2.9 \pm 0.4 \pm 0.4$
γη'	$12.6 \pm 2.9 \pm 1.5$
γ 2(π ⁺ π ⁻)	$39.6 \pm 2.8 \pm 5.0$
$\gamma K_{S}K^{+}\pi^{-}+c.c.$	$25.6 \pm 3.6 \pm 3.6$
$\gamma \pi^+\pi^-K^+K^-$	$19.1 \pm 2.7 \pm 4.3$
γ π ⁺ π⁻ppbar	$2.8 \pm 1.2 \pm 0.7$
γ 2(K ⁺ K ⁻)	< 4.0
γ 3(π ⁺ π ⁻)	< 17
$\gamma 2(\pi^+\pi^-)K^+K^-$	< 22

$D \rightarrow e^+X$, $D \rightarrow K^{+/-}X$ and $D \rightarrow \mu^+X$

$B(D \rightarrow$	e ⁺ X)		
	$B(D^0 \to e^+ X)(\%)$	$B(D^+ \to e^+ X)(\%)$	PLB 658 (2007) 1
CLEO-c	6.46±0.17±0.13	16.13±0.20±0.33	
MarkIII	7.5±1.1±0.4	17.0±1.9±0.7	
BES-II	6.3±0.7±0.4	15.2±0.9±0.8	$\frac{\Gamma(D^+ \to e^+ X)}{\Gamma(D^0 \to e^+ X)} = 0.95 \pm 0.12 \pm 0.07$
PDG2007	6.55±0.17	16.1±0.4	$1(D^{\circ} \to e^{-}X)$

PLB 658 (2007) 1

 $\mathbf{B}(\mathbf{D} \rightarrow \mathbf{K}^{+/-}\mathbf{X})$

	$B(D^+ \to K^- X)(\%)$	$B(D^+ \to K^+ X)(\%)$	$B(D^0 \to K^- X)(\%)$	$B(D^0 \to K^+ X)(\%)$
BES-II	24.7±1.3±1.2	6.1±0.9±0.4	57.8±1.6±3.2	$3.5 \pm 0.7 \pm 0.3$
PDG2007	27.5±2.4	5.5±1.6	53±4	3.4 ^{+0.6} -0.4

B(D→μ⁺**X)**

	$B(D^0 \to \mu^+ X)(\%)$	$B(D^+ \to \mu^+ X)(\%)$	the first measurement
ARGUS	6.0±0.7±1.2	-	Τ
CHORUS	6.5±1.2±0.3	-	$\frac{D^{+}}{\tau_{D^{0}}} = 2.54 \pm 0.02$
BES-II	6.8±1.5±0.6	17.6±0.7±1.3	$\frac{B(D^+ \to \mu^+ X)}{2} = 2.59 \pm 0.70 \pm 0.15$
PDG	6.6±0.6		$B(D^{\circ} \rightarrow \mu^{+}X)$

To be published in PLB

Resonance Parameters of \psi(3770)

Resonance Parameters of \psi(3770)

Comparison with those measured by other experiments (energy scan)

Experiment	σ ^{prd} [e⁺e⁻→ψ(3770)][nb]	σ ^{obs} [e⁺e⁻→ψ(3770)][nb]	
BES (PLB 625 (2007) 238	10.0±0.3±0.5	7.2±0.2±0.4	ec. 2003 data
BES [PRL 97(2006)121801]	9.6±0.7±0.4	6.9±0.5±0.3	lar. 2003 data
MARKII		9.3±1.4	

М _{ψ(3770)} (MeV)	Γ ^{tot} _{ψ(3770)} (MeV)	Γ ^{ee} _{ψ(3770)} (eV)	Note	
3772.4±0.4±0.3	28.5±1.2±0.2	277±11±13	PLB 625 (2007) 238	Dec. 2003 data
3772.2±0.7±0.3	26.9±2.4±0.3	251±26±11	PRL 97(2006)121801	Mar. 2003 data

Experiment	BES [PLB 652(2007) 238	BES [PRL 97(2006)121801]	PDG
B[ψ(3770)→e⁺e⁻][×10⁻⁵]	0.97±0.03±0.05	0.93±0.06±0.03	1.05±0.14
	Dec. 2003 data	Mar. 2003 data	

PDG04

R_{uds}=2.121 ±0.023 ±0.084 (fit to cross sections at 68 energy points)

 $B[\psi(3686) \rightarrow e^+e^-] = (0.704 \pm 0.122 \pm 0.033)\%$ PRL 97 (2006) 121801 $B[\psi(3686) \rightarrow e^+e^-] = (0.735 \pm 0.018)\%$

B[ψ(3770)→non-DD]

)7) 122002

$$BF(\psi(3770) \rightarrow non - DD) = (15.1 \pm 5.6 \pm 1.8)\%$$

$$\sigma_{non-DD}^{\rho bs} = (1.08 \pm 0.40 \pm 0.15) \text{ nb}$$

$$\sigma_{DD}^{obs} = (6.07 \pm 0.40 \pm 0.35) \text{ nb}$$

$$R_{uds} = 2.199 \pm 0.047 \pm 0.119$$
(From the fit)

Analyzing data samples of 17.3 pb⁻¹ @ 3.773 GeV, 5.65 pb⁻¹ @ 3.650 GeV and 1 pb⁻¹ data @ 3.6648 GeV yields

$$R_{uds} = 2.214 \pm 0.031 \pm 0.094$$

$$\sigma_{\psi(3770)}^{obs} = (7.07 \pm 0.36 \pm 0.48) \text{ nb}$$

$$\sigma_{non-D\overline{D}}^{obs} = (0.95 \pm 0.35 \pm 0.31) \text{ nb}$$

$$\sigma_{D\overline{D}}^{obs} = (6.12 \pm 0.37 \pm 0.23) \text{ nb}$$

$$BF[\psi(3770) \rightarrow non - D\overline{D}] = (13.4 \pm 5.0 \pm 3.6)\%$$
³⁹

Summary

- > Y(2175) observed in J/ψ decays.
- > η (2225) resonance parameters from PWA.
- > X(1440)
- > Observation of new ψ' radiative decay modes.
- > ψ (3770) resonance parameters, non-DD dacays
- More and better results are expected from BESIII in the near future (F. Harris's talk).

Thanks a lot !