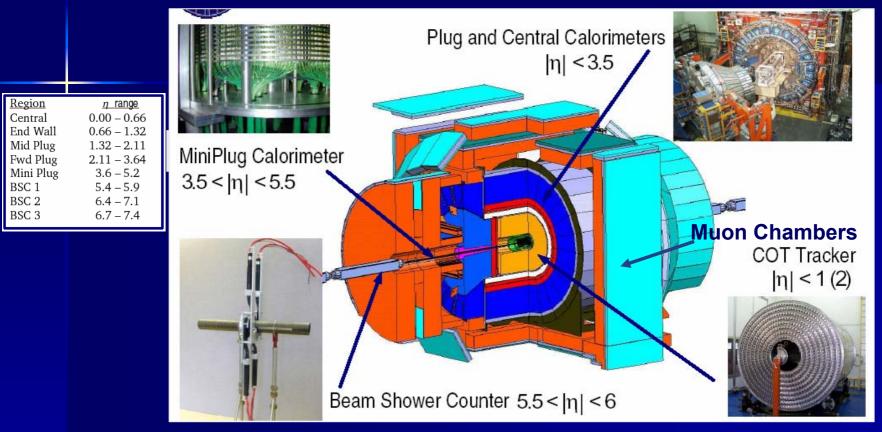
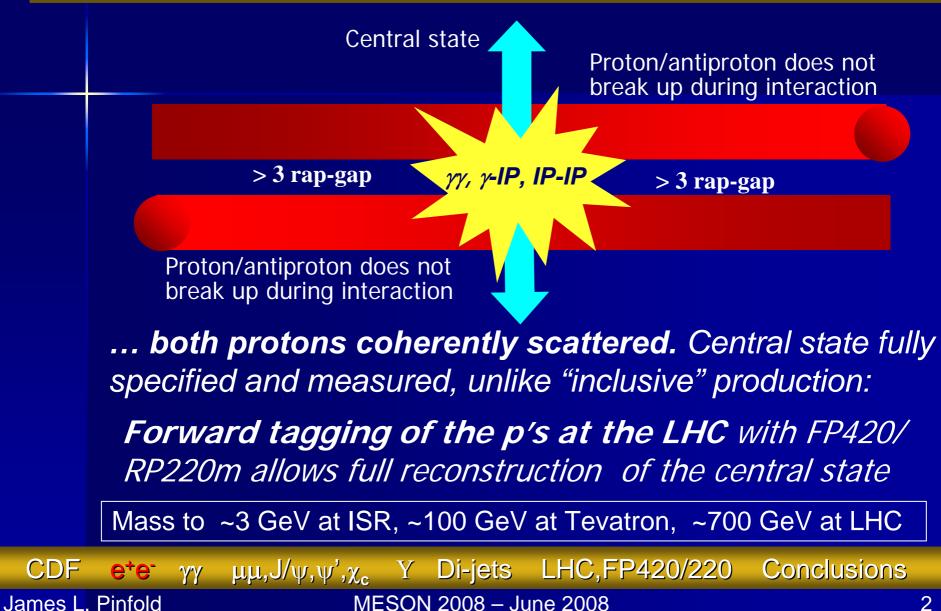
Exclusive Production at the TEVATRON and the LHC

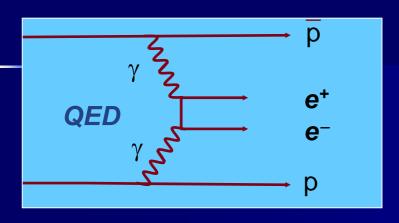

Meson 2008

See talks by Antoni Szczurek & Wolfgang Schäfer on Saturday-

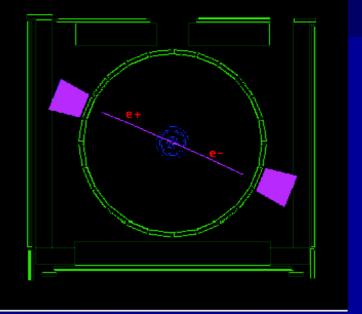
James L Pinfold

University of Alberta


CDF Detector


A Roman Pot deployed detector is placed on one side of CDF at at 60m from the IP. (RPS acceptance ~80% for 0.03 < x < 0.1 and |t| < 0.1)</p>

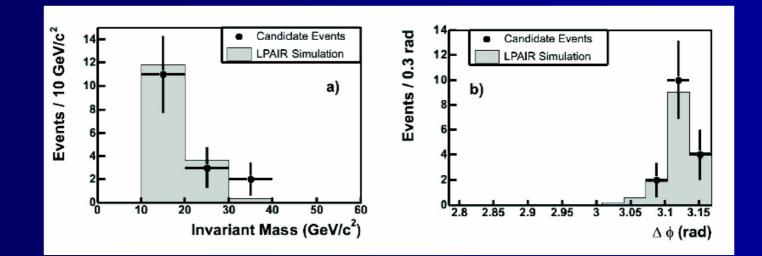
CDFe⁺e⁻γγμμ, J/ψ, ψ', χ_c YDi-jetsLHC, FP420/220ConclusionsJames L. PinfoldMESON 2008 – June 2008


Central Exclusive Physics

Exclusive e⁺e⁻ Production (1)

Central state produced via QED γγ → e⁺e⁻

- Protons do not dissociate
- Only e⁺e⁻ are produced → nothing else


CDF $e^+e^- \gamma\gamma \mu\mu$, J/ ψ , ψ' , $\chi_c Y$ Di-jets LHC, FP420/220 Conclusions James L. Pinfold MESON 2008 – June 2008 3

Exclusive e⁺e⁻ Production (2)

- Integrated luminosity → 532 ± 32 pb⁻¹
 DIFF_DIPHOTON Trigger:
 - 2 EM clusters with $E_T > 4$ GeV plus a veto on BSC 1 (E+W)
- Exclusive e⁺e⁻ events are selected by:
 - Reconstructing the e⁺e⁻
 - Requiring that there is no other activity in $|\eta| < 7.4$
 - For the two EM showers we have $E_T > 5$ GeV and $|\eta| < 2$
 - 16 e⁺e⁻ candidates selected
- Backgrounds 1.9 ± 0.3 events:
 - dijet fake (0.0 +0.1 -0.0)
 - cosmic (negligible)
 - inclusive distribution (0.3+/-0.1)
 - dissociation (1.6 ± 0.3) (these are also gg →e⁺e⁻) where one (or both) proton(s) dissociate)

Exclusive e⁺e⁻ Production (3)

Kinematics of 16 event candidate sample match the predictions of the LPAIR signal MC (J.Vermaseren. Nucl. Phys., B229 347-371, 1983)- e⁺e⁻ are collinear in φ and have matching E_T

• Cross-section for $\gamma\gamma \rightarrow e^+e^-$ LPAIR theory: $\sigma_{LPAIR} = 1.71 \pm 0.01 \text{ pb}$

Exclusive e⁺e⁻ Production (4)

$$\sigma_{MEASURED} = 1.6 + 0.5 - 0.3$$
 (stat) ± 0.3 (sys) pb

- Agrees with LPAIR theory: $\sigma_{LPAIR} = 1.71 \pm 0.01 \text{ pb}$
- Prob. of $1.9 \rightarrow \geq 16 = 1.3 \times 10^{-9}$ a 5.5σ "observation"
- This is the first observation of exclusive two-photon produced e⁺e⁻ interactions in p-p(bar) collisions (also seen at RHIC – Phys. Rev C70:031902, 2004; nucl-ex/0601001)
- The LHC can rely on measuring such processes for luminosity measurement, etc.

PRL 98, 112001 (2007) PHYSICAL REVIEW LETTERS week ending 16 MARCH 2007

Observation of Exclusive Electron-Positron Production in Hadron-Hadron Collisions

A. Abulencia,²³ J. Adelman,¹³ T. Affolder,¹⁰ T. Akimoto,⁵⁵ M. G. Albrow,¹⁶ D. Ambrose,¹⁶ S. Amerio,⁴³ D. Amidei,³⁴ A. Anastassov,⁵² K. Anikeev,¹⁶ A. Annovi,¹⁸ J. Antos,¹ M. Aoki,⁵⁵ G. Apollinari,¹⁶ J.-F. Arguin,³³ T. Arisawa,⁵⁷

We have many more candidates in new data with dedicated 2-EM shower trigger

DF e⁺e⁻ γγ μμ, J/ψ, ψ', χ_c Y Di-jets LHC, FP420/220 Conclusions

MESON 2008 – June 2008

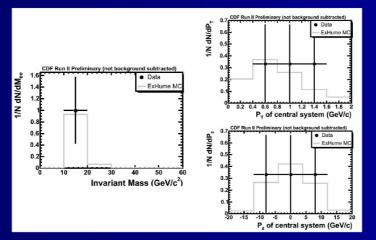
James L. Pinfold

Exclusive yy Study (1)

$$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & &$$

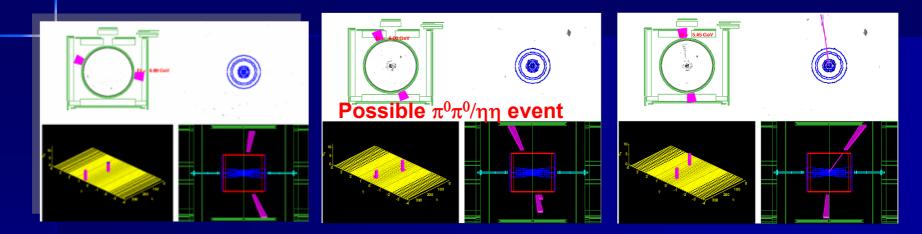
where X has $J^{PC} = 0^{++}$

Exclusive γγ events:


selected in the same way as e⁺e⁻ (except tracking)

Selected in the same way as γγ→e⁺e⁻ (except tracks) agreement of γγ →e⁺e⁻ cross section gives confidence in analysis methodology

CDF $e^+e^- \gamma\gamma \mu\mu$, $J/\psi, \psi', \chi_c$ YDi-jetsLHC, FP420/220ConclusionsJames L. PinfoldMESON 2008 – June 20087


- **3** candidate events found in 532 pb⁻¹ of Run II data.
- Background 0.09 ± 0.04 events (mostly misid. of excl.)
- Good agreement on kinematics with ExHume MC (Monk & Pilkington. hep-ph/0502077)

0.8 +1.6 events predicted from ExHuME MC

Exclusive yy Candidates (1)

• **2** candidates are almost certainly $\gamma\gamma$ but the $\pi^0\pi^0/\eta\eta$ hypotheses cannot be excluded

We have found >10 more candidates in data with new di-EM shower trig.

Exclusive yy Candidates (2)

- The upper limit of the cross-section pp --> p γγ p is set at 410 fb with 95% confidence level (taking into account the background + its uncertainty, signal selection efficiency, & L_{int})
- If 2 of the 3 candidates are γγ events we obtain a cross section: +120

 $\sigma(2 \text{ events}) = 90_{-30} \pm 16 \text{ fb}$

Durham Group: Khoze, Martin, Ryskin & Stirling hep-ph/0507040 Eur.Phys.J C38 (2005) 475 : 38 fb with factor ~ 3 uncertainty

PRL 99, 242002 (2007)

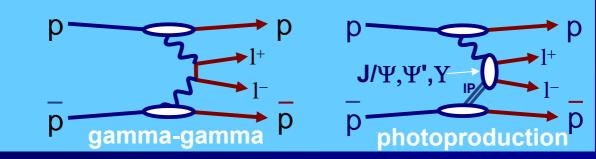
PHYSICAL REVIEW LETTERS

week ending 14 DECEMBER 2007

Conclusions

Search for Exclusive $\gamma\gamma$ Production in Hadron-Hadron Collisions

T. Aaltonen,²³ A. Abulencia,²⁴ J. Adelman,¹³ T. Affolder,¹⁰ T. Akimoto,⁵⁵ M. G. Albrow,¹⁷ S. Amerio,⁴³ D. Amidei,³⁵ A. Anastassov,⁵² K. Anikeev,¹⁷ A. Annovi,¹⁹ J. Antos,¹⁴ M. Aoki,⁵⁵ G. Apollinari,¹⁷ T. Arisawa,⁵⁷ A. Artikov,¹⁵

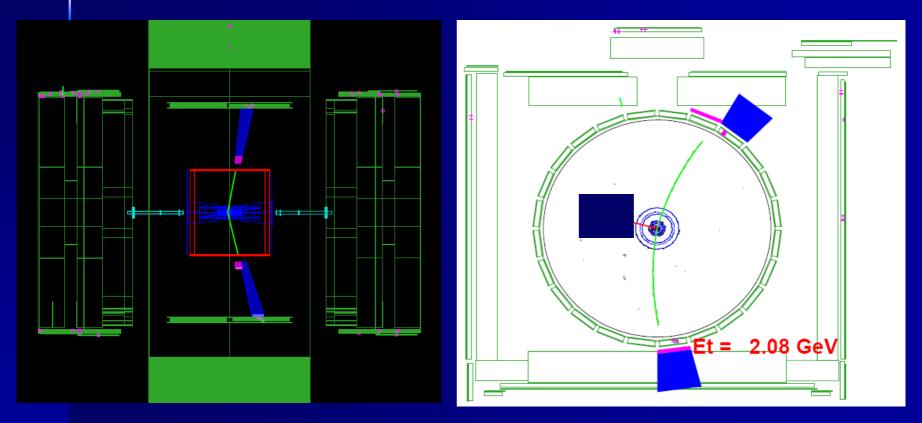

e+e-

CDF

MESON 2008 – June 2008

 $\mu\mu$, J/ ψ , ψ' , χ_c Y Di-jets LHC, FP420/220

Exclusive $\mu^+\mu^-$ Production (1)


- Trigger (DIFF_CHIC_CMU1.5_PT1.5_TRK):
 - BSC Gap, east & west
 - muon + track ($p_t > 1.3$; $|\eta| < 1.2$)
 - $2.7 < M(muon + track) < 4.0 \text{ GeV}c^2$
- The existing sample corresponds to a lumi of 1.48 fb⁻¹
- Also higher mass muons have just been stripped, (trigs with $p_t(\mu) > 4$ GeV, 2 muons, no $\Delta \phi$ requirement).

 Should be very efficient for dimuons, with M >~ 9 GeV, covering the Upsilon region and above.

CDFe⁺e⁻γγ $\mu\mu$, J/ψ , ψ' , χ_c YDi-jetsLHC, FP420/220ConclusionsJames L. PinfoldMESON 2008 – June 20081

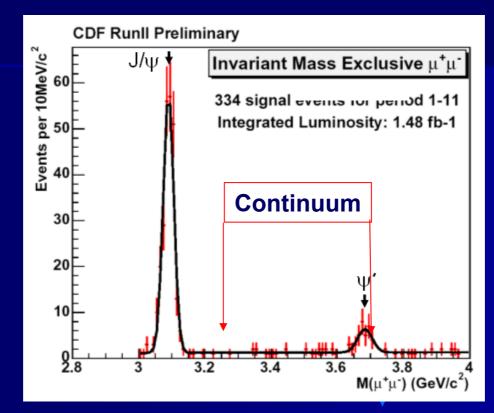
Exclusive $\mu^+\mu^-$ Production (2)

Example exclusive $\mu^+\mu^-$ *event: Run 199559, Event 13120174*

CDF $e^+e^ \gamma\gamma$ $\mu\mu$, J/ψ , ψ' , χ_c YDi-jetsLHC, FP420/220ConclusionsJames L. PinfoldMESON 2008 – June 200812

Exclusive $\mu^+\mu^-$ Production (3)

- Integrated luminosity 1.48 fb⁻¹
 - Offline cuts
 - Loose quality cuts
 - No other activity in the events (to an $|\eta|$ of 7.4)
 - $P_T(\mu) > 1.4 \text{ GeV/c } \& |\eta(\mu)| < 0.6$
 - Cosmic ray cuts (abs (delta_TOF) < 3 ns)
 - Exclusivity cuts (same as for the eter paper)
- Analysis of cuts is underway
 - Acceptance
 - Efficiency
 - Effective luminosity


 STARLIGHT Monte Carlo simulation employed (S. Klein & J. Nystrand)

e⁺e⁻

CDF

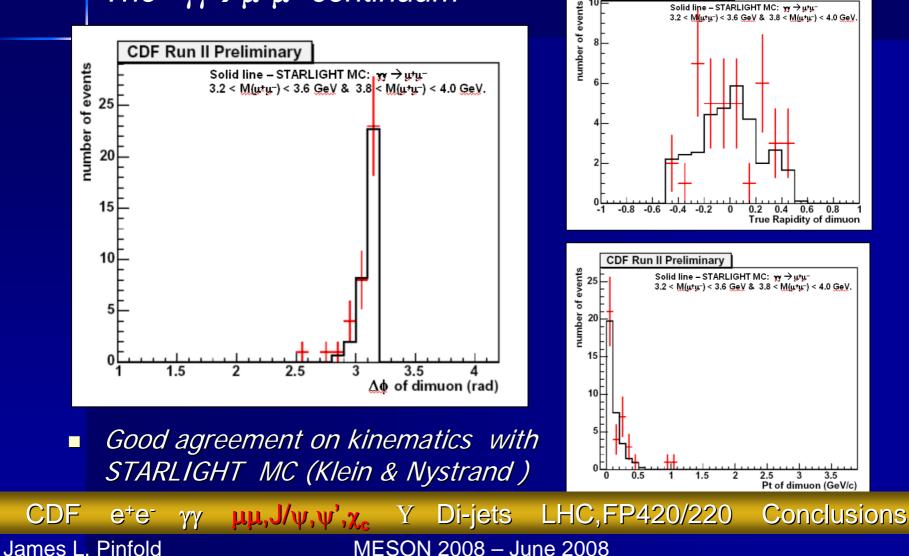
γγ μμ, J/ψ, ψ', χ_c Y Di-jets LHC, FP420/220 Conclusions

Exclusive µ⁺µ⁻ Candidates (1)

Many candidate events (334) have been found (CDF-II Preliminary)

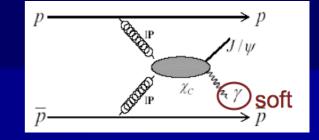
We now have a ~25% increase of the signal due to a more efficient cosmic ray cut. – we await the blessing of the requisite plot.

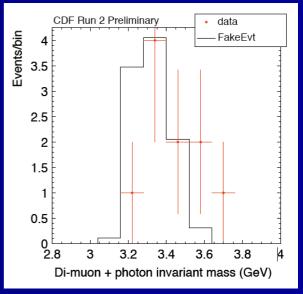
Exclusive µ⁺µ⁻ Candidates (2)


CDF Run II Preliminary

Solid line – STARLIGHT MC: y → u*u-

0.6 0.8


3.5


The $\gamma\gamma \rightarrow \mu^+\mu^-$ continuum

Exclusive χ_c Production "Background"

- Similar selection as $\mu^+\mu^-$ search with additional isolated EM shower req.
- 10 candidates in 93 pb⁻¹ of data from an old analysis
- **New ChicMC** (James Stirling)
- Problem is understanding low energy photon from the χ_c decay
- Many more events with new trigger
- We estimate that there is a ~10% cont. of χ_c to the J/ $\psi \rightarrow \mu^+\mu^-$ peak with excl. cuts (using fits to $E_t \& \Delta \phi$ dists)
- We are working on this ...watch this space

$BR (\chi_c^0 \to J/\psi + \gamma \to \mu^+ \mu^- \gamma$

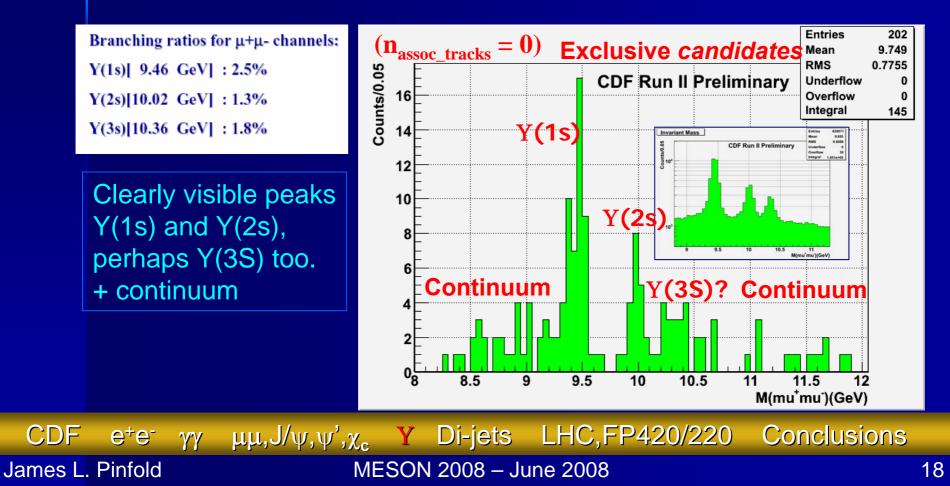
x no other interaction x acceptance (tria) \Rightarrow few pbs

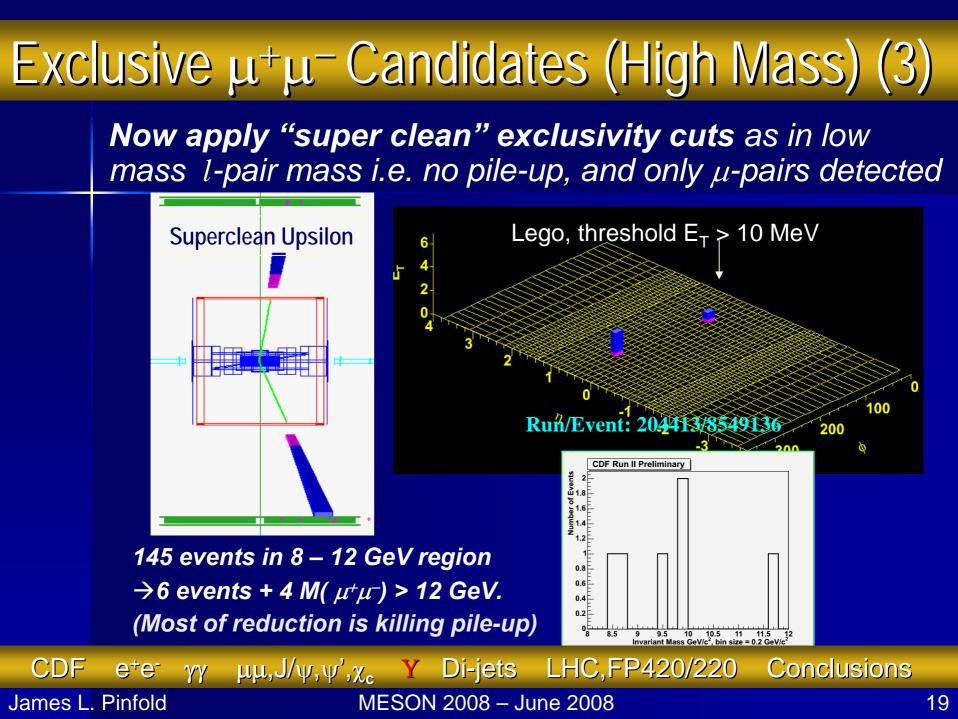
CDF $e^+e^-\gamma\gamma$ $\mu\mu$, J/ψ , ψ' , χ_c Y Di-jets LHC, FP420/220 Conclusions

James L. Pinfold

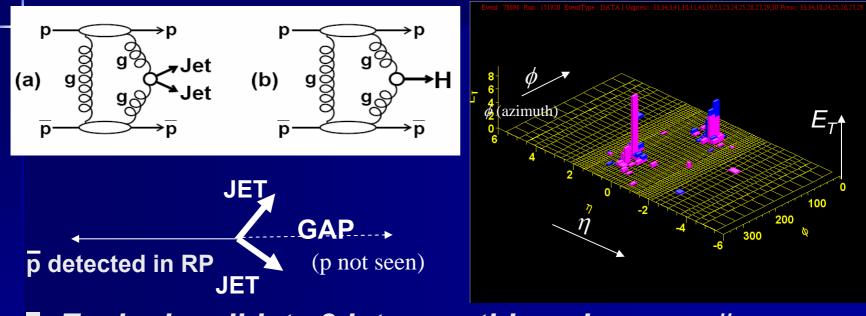
MESON 2008 – June 2008

Exclusive $\mu^+\mu^-$ Candidates (High Mass) (1)


- Find Exclusive events using
 - Number of associated tracks = 0
 - Kinematics: $\Delta \phi \approx 180^{\circ}$, $\Delta p_T \approx 0$, (or $\Sigma P_T \approx 0$)
- Trigger: 2 central muons with p_τ > 4 GeV/c
- L = 890/pb⁻¹ ~ 2.3 M events.
- Remove cosmic rays (timing + colinearity)
- Require on beam-line. Count additional (associated) tracks (n_ass) within 5 cm of μ⁺μ⁻ vertex.
- Cleanliness, backgrounds & acceptances being studied.
- Number of events "reasonable" for QED process & Lumi.

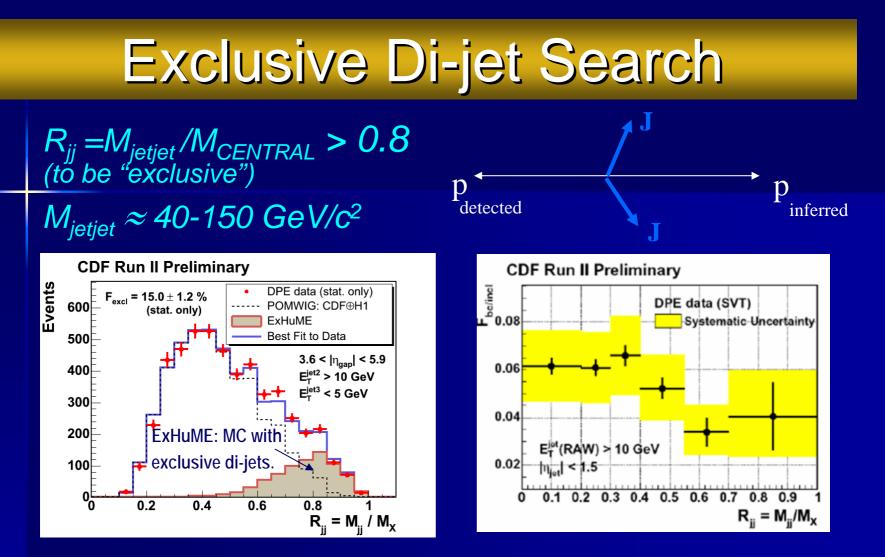

CDF $e^+e^- \gamma \gamma \mu \mu$, $J/\psi, \psi', \chi_c$ YDi-jetsLHC, FP420/220ConclusionsJames L. PinfoldMESON 2008 – June 200817

Exclusive $\mu^+\mu^-$ Candidates (High Mass) (2)


Invariant Mass - Upsilon Region

$\Delta \phi > 120^{\circ}$, $p_T(\mu^+ + \mu^-) < 7 \text{ GeV/c} + \text{ no add. tracks}$

Exclusive Di-jet Search



Exclusive di-jets 2 jets + nothing else - no pile-up essential thus lower lumi running

■ Initial sample includes two high E_T (>10 GeV/c²) jets with a 3rd jet with $E_T < 5$ GeV/c² with 3.6 < $\eta_{gap} < 5.9$

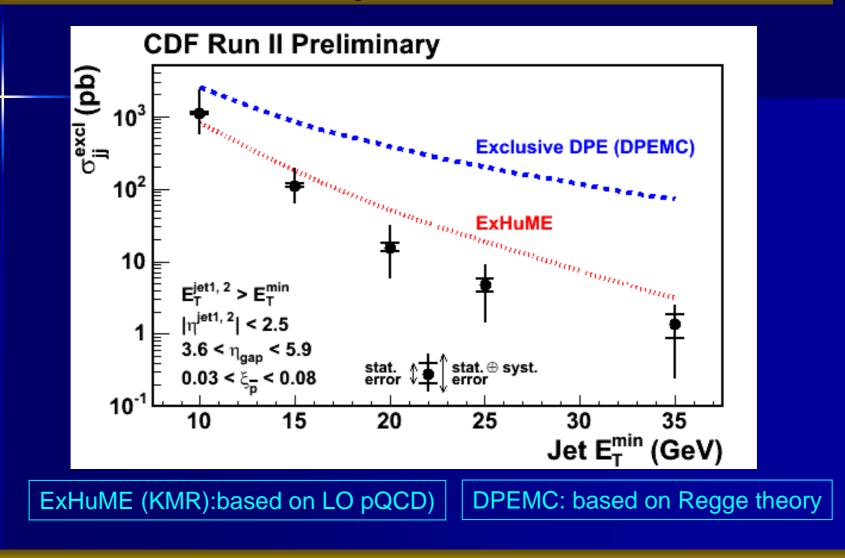
20

CDF $e^+e^- \gamma\gamma \mu\mu$, J/ ψ , ψ' , χ_c Y **Di-jets** LHC, FP420/220 Conclusions James L. Pinfold MESON 2008 – June 2008

Apparent b-jet suppression as di-jets become exclusive (Theoretically $\Rightarrow 0$ as Rjj $\Rightarrow 1$, $J_z=0$ rule)

LHC, FP420/220

e+e-

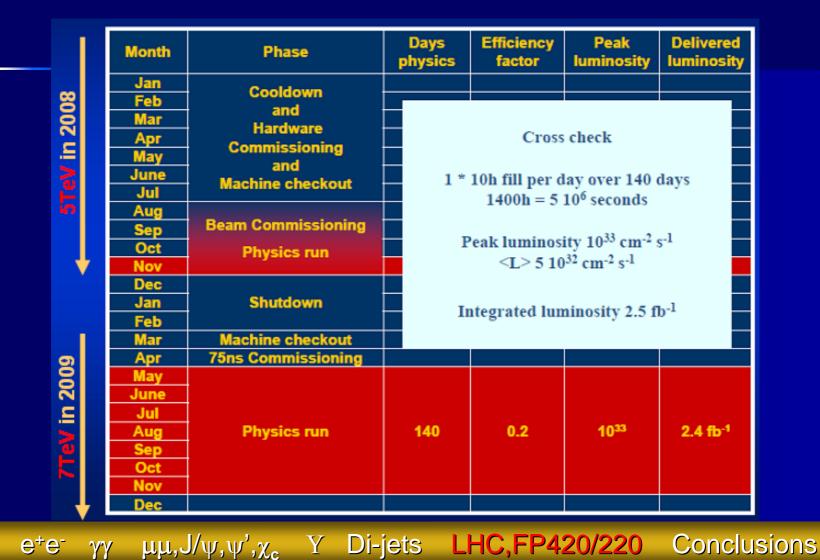

ŶΥ

CDF

 $\mu\mu$, J/ ψ , ψ' , χ_c Y **Di-jets**

Conclusions

Exclusive Di-jet Cross-section


LHC,FP420/220

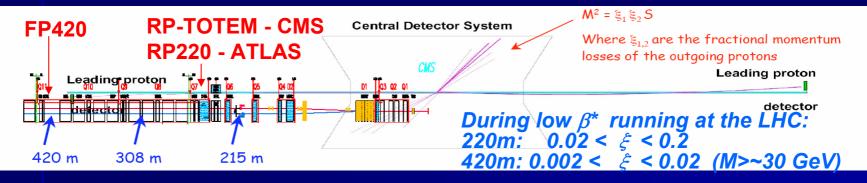
CDF $e^+e^- \gamma\gamma \mu\mu$, $J/\psi, \psi', \chi_c Y$ **Di-jets** LHC, F James L. Pinfold MESON 2008 – June 2008

22

Conclusions

The LHC Startup

James L. Pinfold

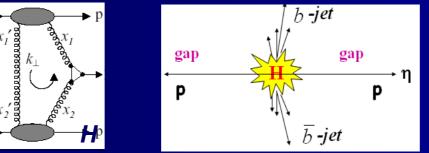

CDF

MESON 2008 – June 2008

Forward Detectors at the LHC

Proton Tagging with FP420 & RP220

■ Main physics aim is Exclusive Central Production pp → p + X + p


- Higgs boson by DPE , New (SUSY) physics, QCD/Diffractive Physics studies, photon photon physics, photoproduction
- Detector Requirements:
 - Detectors close to the beam edgeless (Si) detectors & rad. hard
 - Resolution $5\mu m$ for track displacement, 1μ rad for angle to beam
 - Suppress pile-up background with UF ToF detectors (~10ps res.)

R&D advanced – all TDRs submitted by the end 2008

CDF $e^+e^- \gamma\gamma \mu\mu$, $J/\psi, \psi', \chi_c$ YDi-jetsLHC, FP420/220ConclusionsJames L. PinfoldMESON 2008 – June 200825

EG - Exclusive Higgs Production at the LHC

- Exclusive central production at the LHC is a glue glue collider with known beam energy
- Selection rules mean that central system is 0⁺⁺
- Tagging the protons gives central mass resolution ~GeV
- Exclusive production of the Higgs is a benchmark.

 $\sigma(pp \rightarrow p H p)$: ~ 2-10 fb (SM) ~10-100 fb (MSSM)

CP violation in the Higgs sector studied using azimuthal correlation between the tagged protons

Proton tagging may be the discovery channel in certain regions of the MSSM.

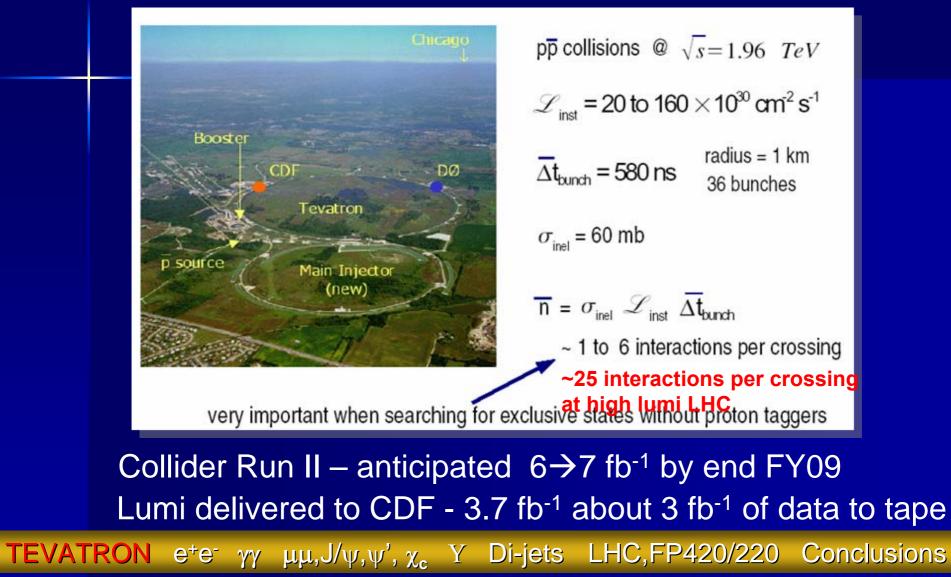
Conclusion

At CDF we have observed exclusive production via:

- Two-photon interactions (e^+e^- , $\mu^+\mu^-$)
- QCD Central Exclusive Production (DPE) (γγ, jetjet)
- Photoproduction (γ -IP fusion) ($J/\psi, \psi', Y$)
- The 2-photon results agree with LPAIR Monte Carlo
 - The way is open to use such events in the luminosity measurement at the LHC as well as the calibration of FP420/220
- The TEVATRON results for γγ & jet jet "agree" (~2) with Durham group predictions, leading credence to their predictions for the LHC Higgs X-sec
- The LHC will not only be a p-p collider, but also a: γ-γ collider; g-g (IP – IP) collider and a γ-IP collider

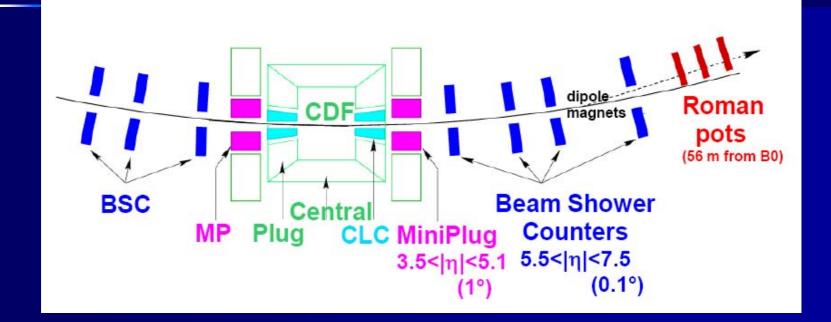
Proton tagging at the LHC with FP420+RP220/RP-TOTEM promises an exciting exclusive physics program

 $\mu\mu$, J/ ψ , ψ' , χ_c Y Di-jets LHC, FP420/220 Conclusions


e+e-

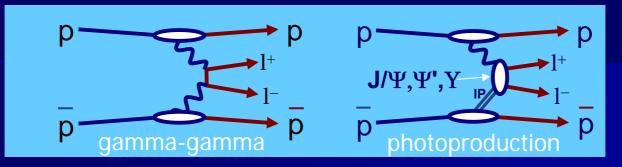
γy

CDF

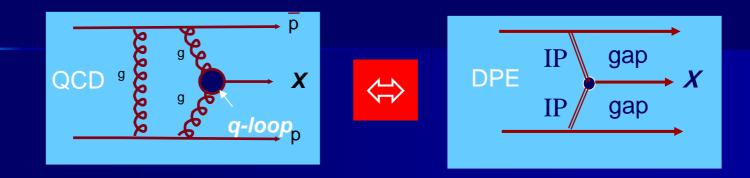

Tevatron Performance

James L. Pinfold

MESON 2008 – June 2008


CDF Forward Detector

RPS acceptance ~80% for 0.03 < x < 0.1 and |t| < 0.1


Motivation: for Exclusive Studies

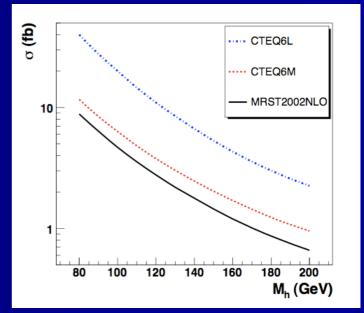
Motivations to study exclusive lepton pair production at the Tevatron:

- Potential to make measure luminosity at the LHC with precision ~5 % or better as we have a relatively well known QED cross-section
- Can be used as a control sample for exclusive processes whose cross- sections are not well predicted ($\gamma\gamma$, χ_c , Higgs, ...)
- Used to calibrate forward proton spectrometers (FP420) at LHC
- Good place to search for the odderon

Motivation: for Exclusive Studies

Motivations to study QCD Central Exclusive Production at the Tevatron:

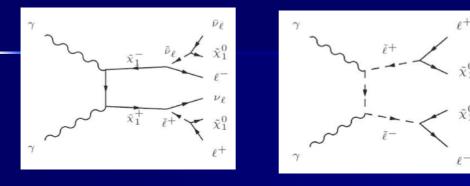
- Study exclusive di-jets
- Study χ_c (c-loop), χ_b (b-loop) production
- Study $\gamma\gamma$ production the cleanest test of the theory of diffractive Higgs production
- Good training ground for LHC exclusive physics at higher masses


James L. Pinfold

MESON 2008 – June 2008

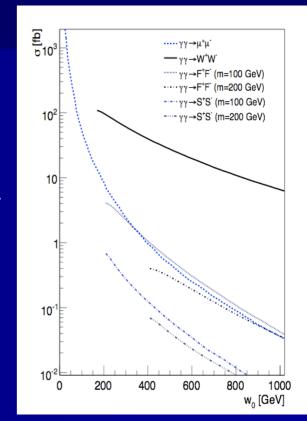
More on the Exclusive Higgs

Main uncertainties in the exclusive Higgs cross-section:


- Proton survival probability (Tevatron → LHC) that could be pinned down with early LHC data on pp →p WW p
- PDF uncertainty
- The Durham Group's (DG's) predictions for dijets & diphotons are confirmed within a factor of ~ 2 by CDF

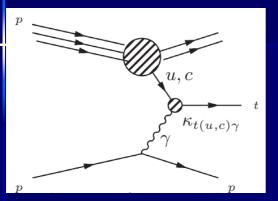
NB these processes are standard candles for exclusive Higgs production lending credence to the DG's predictions for the exclusive x-sec at the LHC

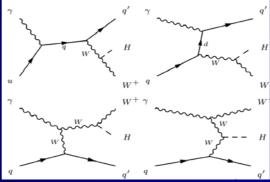
James L. Pinfold


Photon-Photon Physics

Extensive program of γγ – physics

- $\gamma \gamma \rightarrow \mu \mu$, ee QED processes
- $\gamma \gamma \rightarrow QCD (jets..)$
- $\gamma \gamma \rightarrow ZZ/WW$ anom. couplings
- $\gamma \gamma \rightarrow top pairs$
- $\gamma \gamma \rightarrow Higgs$
- $\gamma \gamma \rightarrow Charginos....$

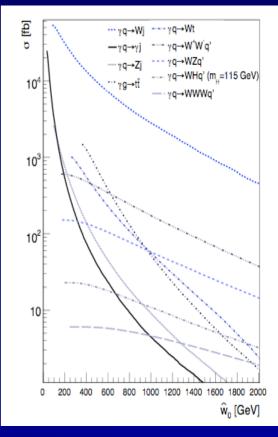

There is also an photoproduction study program.....



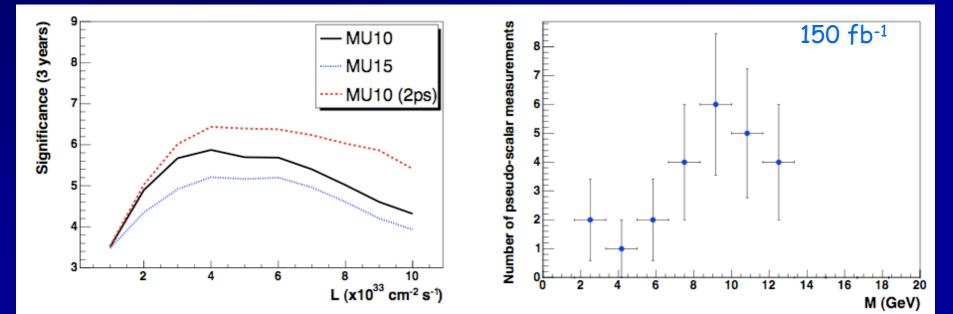
James L. Pinfold

MESON 2008 – June 2008

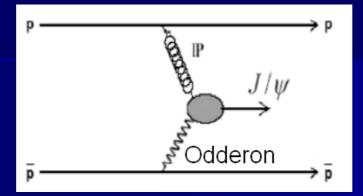
Photoproduction



In photon-proton scattering eg:

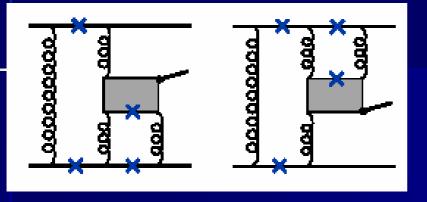

- WH mechanism in SM can be enhanced in some models – probably not a discovery channel.
- Look for anomalous single top via FCNC.

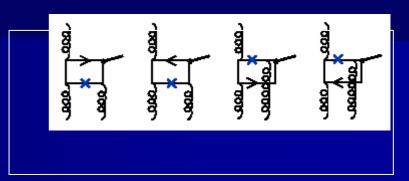
Exclusive photon-pomeron fusion studies will continue at higher mass



h->aa->ττττ

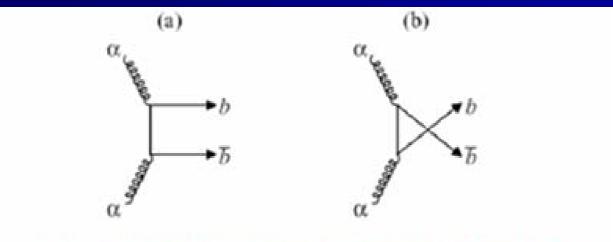
Low mass higgs in NMSSM: If $m_a < m_B$ difficult (impossible) at standard LHC J. Gunion: FP420 may be the only way to see it at the LHC


Exclusive Di-leptons – a Good Place to Search for the Odderon



- In perturbative QCD the lowest order prototype of the pomeron is the color neutral system of two gluons.
- The odderon is the C-odd partner of the pomeron the hard odderon skeleton consists of three gluons in a color neutral state.
- Global fits of the available hh and hh-bar data seem to establish that HE scattering dominated by exchange of the C = P = +1 Pomeron.
- If the Odderon exists it would contribute to the exclusive J/Ψ and Ψ' signal and be part of our signal
- The Odderon would contribute to J/Ψ , Ψ , Y peaks unlike the χ_c background

MENU: CDF Motivation $e^+e^- \gamma \gamma \mu^+\mu^-, J/\Psi, \Psi', Y \chi_c$ OdderonConclusionsJames L. PinfoldHERA and t the LHC – May 200821


The Odderon

- The color neutral gluon systems, exchanged at high energy scattering processes, can be classified wrt their C parity. The most important one is C-even system with quantum numbers of vacuum i.e. the pomeron.
- In perturbative QCD the lowest order prototype of the pomeron is the color neutral system of two gluons.
- The odderon is the C-odd partner of the pomeron the hard odderon skeleton consists of three gluons in a color neutral state.
- One would naively expect a suppression by a power of the coupling constant s for the additional gluon). It is not clear, however, why the contribution of the odderon is so small that it has not been definitely observed by any experiment.

b-jet Suppression

 $J_z=0 \rightarrow$ for colour singlet bbar production, the born level contributions of a) and b) cancel in the limit $m_b \rightarrow 0$