Workshop Meson 2008, Jun 7th 2008

Alejandro Pérez LPNHE-IN2P3-CNRS Universités de Paris VI, Paris VII

Motivation

- Charmless 3 body B decays $K\pi\pi$, $KK\pi$ and KKK
- Spectroscopy: $\pi\pi$, $K\pi$ and KK mass spectra.
- Mainly contributing diagrams: b→s loop, b→u tree and b→d loop. (good place to look for New Physics).
- CKM Physics:
 - Testing CKM constraints from charmless modes:
 γ and β measurements.
 - Compare with global CKM fits.

Experimental Issues

- Small S/B ratio, mostly continuum ($e^+e^- \rightarrow q\overline{q}, q \neq b$) background.
 - Use kinematical and event-shape variables to discriminate:

Alejandro Perez,

Time-dependent Dalitz Plot Analyses• Parameterizing signal PDF using Isobar ModelDalitz Plot
Isobar Model
$$A(DP) = \sum a_j F_j(DP)$$
Shapes of intermediates
states over DPTime-dependent DP PDF
 $f(\Delta t, DP, q_{lag}) \propto (|A|^2 + |\overline{A}|^2) \frac{e^{-|A|/2}}{4\tau} \left(1 + q_{lag} \frac{2 \operatorname{Im}[\overline{A}A^*]}{|A|^2 + |\overline{A}|^2} \sin(\Delta m_d \Delta t) - q_{lag} \frac{|A|^2 - |\overline{A}|^2}{|A|^2 + |\overline{A}|^2} \cos(\Delta m_d \Delta t)\right)$ CP violation varies over DPComplex amplitudes a_j and \overline{a}_j determine DP interference pattern.
Module and phase con be directly fitted on data.Time-dependent CPV parameters:
 $C_j = \frac{|a_j|^2 - |\overline{a}_j|^2}{|a_j|^2 + |\overline{a}_j|^2}$ Interference helps disentangling
strong and weak phases and thus
raises the degeneracy on the
phases.

Workshop Meson 2008, Jun 7th 2008

Time-dependent Dalitz Plot Analyses

Spectroscopy: $\pi\pi$, $K\pi$ and KK mass spectra

Alejandro Perez, Workshop Meson 2008, Jun 7th 2008

Dalitz analysis of $B^+ \rightarrow K^+ \pi^- \pi^+$

- Some resonances are wide, they overlap and interfere
- (e.g. $\rho^{0}K^{+}$ and $f_{0}K^{+}$) $\Rightarrow B^{+} \rightarrow K^{+}\pi^{-}\pi^{+}$ Dalitz-plot (DP) analysis (time-

integrated) is needed: magnitudes and relative phases of amplitudes are directly fitted.

- Sensitive to DCPV in decay rate asymmetry and in relative phase asymmetry.
- Largest S/B ratio among $B \rightarrow K\pi\pi$ decays \Rightarrow Used to study $\pi\pi$ and $K\pi$ mass spectra.

```
\pi \pi \text{ mass spectrum: use} 
f_{0}(980)K^{+}, \rho^{0}(770)K^{+}, f_{2}(1270)K^{+} 
and a scalar f_{x}(1300)K^{+} with 
<math display="block"> \int m = 1479 \pm 8 \text{ MeV/c}^{2} \text{ and} 
\Gamma = 80 \pm 19 \text{ MeV/c}^{2}
```


Dalitz analysis of $B^+ \rightarrow K^+ \pi^- \pi^+$

- Some resonances are wide, they overlap and interfere
- (e.g. $\rho^{0}K^{+}$ and $f_{0}K^{+}$) $\Rightarrow B^{+} \rightarrow K^{+}\pi^{-}\pi^{+}$ Dalitz-plot (DP) analysis (time-

integrated) is needed: magnitudes and relative phases of amplitudes are directly fitted.

- Sensitive to DCPV in decay rate asymmetry and in relative phase asymmetry.
- Largest S/B ratio among $B \rightarrow K\pi\pi$ decays \Rightarrow Used to study $\pi\pi$ and $K\pi$ mass spectra.

KK S-wave from $K^+K^-\pi^+ \& K^+K^-K^0$

Observation of $B^+ \rightarrow K^+ K^- \pi^+$ at 9.6 σ : BR = (5.0 ± 0.5 ± 0.5)x10⁻⁶

(429 ± 43 events)

KK S-wave from K⁺K⁻π⁺ & K⁺K⁻K⁰

CKM physics: γ and β measurements

Alejandro Perez,Workshop Meson 2008, Jun 7th 2008

b→sqq penguins: loop-dominance

b→scc:

- "golden" modes for sin(2 β), i.e. J/ ψ K⁰_s
- tree-dominated decays
- penguins carry same weak phase

b→sqq:

- pure "internal" or "flavor-singlet" penguins, i.e. ϕK_{s}^{0}
- dominant phase, same CKM factors as $b \rightarrow scc$
- BSM particles could contribute in loops
- A window to New Physics

Alejandro Perez, Workshop Meson

sin($2\beta_{eff}$) from $B^0 \rightarrow \eta' K^0$

- Theoretically clean: negligible tree contributions
- First b→sqq mode to establish CP violation;

results in agreement with $b \rightarrow scc$

Alejandro Perez,

Workshop Meson 2008, Jun 7th 2008

β_{eff} from time-dependent DP analysis: K⁺K⁻K⁰

Fit strategy:

fit on the whole phase space. Average CPV parameters (same β_{eff})

fit on low KK mass (mostly $f_0(980)K_s^0$ and $\phi(1020)K_s^0$ components).

<u>fit on high KK mass (mostly non-resonant component).</u>

β_{eff} from time-dependent DP analysis: K⁺K⁻K⁰

Fit strategy:

fit on the whole phase space. Average CPV parameters (same β_{eff})

fit on low KK mass (mostly $f_0(980)K_s^0$ and $\phi(1020)K_s^0$ components).

fit on high KK mass (mostly non-resonant component).

Alejandro Perez,

Alejandro Perez,

 β_{eff} (loop b \rightarrow s) vs β (tree b \rightarrow s)

 $\sin(2\beta^{\text{eff}}) \equiv \sin(2\phi_1^{\text{eff}})$

0 7000	World Av	orago	-		0.02 ± 0.02
2	BaBar ∠ Belle			0.21 ± 0.50 ±	0.26 ± 0.11 0.21 ± 0.06
-	Average i		≒		0.39 + 0.17
	DeDer			0.50.1	
Q,	BaBar			0.58 ±	0.10 ± 0.03
ž	Belle		1	• 0.64 ±	0.10 ± 0.04
۲	Average		-		0.61 ± 0.07
2	∠ BaBar			0.71 ±	0.24 ± 0.04
2	🖌 Belle			0.30 ±	0.32 ± 0.08
	Average				0.58 ± 0.20
	BaBar			0.40 ±	0.23 ± 0.03
×	Belle			0.33 ±	0.35 ± 0.08
β	Average		<u> </u>		0.38 ± 0.19
	ື BaBar			0.61 +0.22 ±	0.09 ± 0.08
	Average			N	0.61 +0.25
	BaBar			0.62	+0.25 + 0.02
Ř	Belle			0.11 ±	0.46 ± 0.07
8	Average				0.48 ± 0.24
	BaBar			1 44	0.90 ± 0.07
2	 ✓ Belle 			0.18 ±	0.23 ± 0.11
4	Average				0.85 ± 0.07
~	BaBar	5	-	-0.72 ±	0.71 ± 0.08
- -	Belle	A s	÷-	-0.43 ±	0.49 ± 0.09
	A				0.50.0.44
	- BaBar		••••••••••••••••••••••••	0.76	$+0.11^{+0.07}$
2				0.70	+ 0.02 +0.21
2				0.00 ± 0.15	± 0.03 _{-0.13}
	Average :		.i		0.73 ± 0.10
-2	- '	1	0	1	2

S golden modes value

Alejandro Perez,

Alejandro Perez, Workshop Meson 2008, Jun 7th 2008

26

.

Workshop Meson 2008, Jun 7th 2008

(

. . .

.

.

■ Kπ spectrum: as in the B⁺→K⁺π⁻π⁺ using LASS lineshape to describe S-wave Kπ. No significant K^{*0} (1430) contribution

Alejandro Perez,

[′] "γ "(CPS/GPSZ) from K⁺π⁻π⁰, K⁰_sπ⁺π⁻

- $|A_{ii}| \leftrightarrow BRs$ well measured
- $\Delta \phi$ obtained from Dalitz $B^0 \rightarrow K^0_{\ s} \pi^+ \pi^-$:
 - Single likelihood min, error ~31°
- φ and φ obtained from Dalitz B⁰→K⁺π⁻π⁰:
 2 minima close in Likelihood units, ~1σ.
 Phases weakly constrained

Conclusions

- BaBar is exploring many interesting topics in Charmless B decays:
 - Probing $\pi\pi$ and $K\pi$ mass spectrum with: $B^+ \rightarrow K^+ \pi^- \pi^+$
 - Evidence of DCPV: $B^+ \rightarrow K^+ \pi^- \pi^+$ (3.7 σ in $\rho^0 K^+$)
 - Probing KK mass spectrum with: $B^+ \rightarrow K^+ K^- \pi^+ \& B^0 \rightarrow K^+ K^- K^0$
 - $sin(2\beta_{eff})$ from $\eta'K_{s}^{0}$, results compatible with b \rightarrow scc
 - β_{eff} from time-dependent DP analyses:
 ρ⁰K⁰_s, f₀K⁰_s, φK⁰_s & high mass K⁺K⁻K⁰
 - " γ " via CPS/GPSZ: B⁰ \rightarrow K⁺ $\pi^{-}\pi^{0}$,B⁰ \rightarrow K⁰_s $\pi^{-}\pi^{+}$, non-trivial constraint in ($\overline{\rho}-\overline{\eta}$) plane

Alejandro Perez, Workshop Meson 2008, Jun 7th 2008

Outline

- Dalitz analysis of $B^+ \rightarrow K^+ \pi^- \pi^+$:
 - ππ mass spectrum.
 - Kπ mass spectrum.
 - Large Direct CP Violation (DCPV).
- KK S-wave from $B^+ \rightarrow K^+ K^- \pi^+ \& B^0 \rightarrow K^+ K^- K^0$
- b→sqq penguin-dominated charmless decays.
 - \bullet b \rightarrow sqq penguins and new physiscs.
 - → sin(2 β_{eff}) from B⁰→ η'K⁰ (Q2B analysis)
 - ◆ Dalitz analyses: 2β_{eff} from B⁰→K⁰_sπ⁺π⁻ & B⁰→K⁺K⁻ K⁰
- " γ " (CPS/GPSZ) from $\mathbb{B}^0 \to \mathbb{K}^+ \pi^- \pi^0 \& \mathbb{B}^0 \to \mathbb{K}^0_{s} \pi^+ \pi^-$ Dalitz analyses.
- Conclusions

Alejandro Perez, Workshop Meson 2008, Jun 7th 2008

The Standard Model and the CKM Matrix

Alejandro Perez,

Workshop Meson 2008, Jun 7th 2008

37

CKM Matrix: Current knowledge

The BaBar Experiement

- Y(4S) data taking ended Dec 2007 ~ 465 M B anti-Bs.
- Have recorded ~ 30/fb on Y(3S) and ~15/fb on Y(2S).

 Routinely collected data at 40MeV below Y(4S) peak (offpeak data) for background characterization.

Finished running on April 8th

Integrated Luminosity [fb⁻¹] BaBar 500 PEP II Delivered Luminosity: 553.48/fb BaBar Recorded Luminosity: 531.43/fb BaBar Recorded Y(4s): 432.89/fb BaBar Recorded Y(3s): 30.23/fb BaBar Recorded Y(2s): 14.45/fb Off Peak Luminosity: 53.85/fb Delivered Luminosity ecorded Luminosity Recorded Luminosity Y(4s) Recorded Luminosity Y(3s) Recorded Luminosity Y(2s 300 200 100 2007

As of 2008/04/11 00:00

Alejandro Perez, Workshop Meson 2008, Jun 7th 2008

The Δt and tagging measurement

• The neutral B mesons are produced in a coherent B⁰ anti-B⁰ state

Flavor B tagging is made with B parner

The Dalitz Plot

2 degrees of freedom in $B \rightarrow P_1 P_2 P_3$, usually m_{P1P2}^2 and m_{P1P3}^2 : 3 daughters x 3 p comp – 4 (E, p conservation) - 3 Euler angles

∆t-Dalitz Plot PDF

Time Dalitz Plot and tagging Pdf $f(\Delta t, DP, q_{tag}) \propto (|A|^2 + |\overline{A}|^2) \frac{e^{-|\Delta t|/\tau}}{4\tau} \left(1 + q_{tag} \frac{2 \operatorname{Im}[\overline{A}A^*]}{|A|^2 + |\overline{A}|^2} \sin(\Delta m_d \Delta t) - q_{tag} \frac{|A|^2 - |\overline{A}|^2}{|A|^2 + |\overline{A}|^2} \cos(\Delta m_d \Delta t) \right)$ Dalitz Plot Isobar Model $\overline{A}(DP) = \sum \overline{a}_j \overline{F}_j(DP)$ shapes of intermediate Isobar Model $\overline{A}(DP) = \sum \overline{a}_j \overline{F}_j(DP)$ States over DP Amplitudes a_j and \overline{a}_j determine DP interference pattern.

> **Time-Dependent CP Parameters:** $C_{j} = \frac{|a_{j}|^{2} - |\overline{a}_{j}|^{2}}{|a_{j}|^{2} + |\overline{a}_{j}|^{2}} \qquad S_{j} = \frac{2\mathrm{Im}[\overline{a}_{j}a_{j}^{*}]}{|a_{j}|^{2} + |\overline{a}_{j}|^{2}}$

interference helps disentangling strong and weak phases, and thus raises the degeneracy in the time-dependent CP parameter S

Alejandro Perez,

