PANDA – Hadron Physics with Antiprotons at FAIR

Jens Sören Lange II. Physikalisches Institut University of Giessen, Germany

Meson 2008, 10th International Workshop on Meson Production, Properties and Interaction Cracow, 6-10 June 2008

Panda Physics Program

Panda Physics Program

S=-2

Hypernuclei

- 3rd dimension in nuclear chart S=-2 Nuclei
- PANDA: Double Hypernuclei production via Ξ- capture ~50,000 stopped Ξ- per day
- Λ Λ interaction in nucleus

Electromagnetic formfactors

- timelike and spacelike region
- p $\overline{p} \rightarrow e^+e^-$
- see talk by Frank Maas, June 7, 09:00

Generalized Parton Distributions

- handbag diagrams
- p p ! γ γ^(*)

Transverse nucleon spin

- chiral-odd
- Drell Yan
- $p \bar{p} ! \mu^{+}\mu^{-}(X)$
- proton tensor charge

Panda Physics Program

Outline

- The High Energy Storage Ring
- The Panda Spectrometer
- Physics Examples
 - Charmonium
 ! X(3872)
 - Charmed Mesons
 ! D_{s0}(2317)

Jens Sören Lange, Univ. Giessen, PANDA Hadron Physics Meson2008

FAIR, Facility for Antiproton and Ion Research Darmstadt, Germany

FAIR

Primary Beams

- 238U²⁸⁺ : 10¹²/s @ 1.5-2 AGeV
- **238U⁹²⁺:** 10¹⁰/s @ <35 AGeV
- **Protons** : 2 x10¹³/s @ 30 GeV up to 90 GeV
- 100-1000x present intensity

Secondary Beams

- Broad range of radioactive beams up to 1.5 - 2 AGeV
- intensity up to 10000x over present
- Antiprotons 1 15 GeV

Storage and Cooler Rings

- Radioactive beams
- 10¹¹ stored and cooled Antiprotons
 0.8 14.5 GeV/c in HESR

Cooled beamsParallel Operation

HESR (High Energy Storage Ring)

Detector Requirements

- High rates
 - 2-107 interactions / s
- 4π solid angle
- Vertex detection: D, Λ , K_{S}^{0} , ...

 $\sigma_v < 100 \mu m$

• Momentum resolution

δ**p/p ~1%**

Charged particle ID

e[±], μ [±], π [±], K, p

• Electromagnetic calorimetry

10 MeV<E γ <5 GeV

• Efficient event selection

The Panda Spectrometer

The Panda Spectrometer Implementation in Monte-Carlo Simulation

43,000 geometry volumes ~400,000 lines of C++ code Geant3, Geant4, FLUKA digitization, reconstruction, analysis

- **20 programmers/developers**
- **< 20 Linux platforms**
- \geq 1 TB data generated on GRID

Framework PandaRoot

B Field Mereira State of the second s

B field in kG

! beam deflection for p_{beam}=15 GeV/c 4.2 cm @ z=6m (end of dipole)

Jens Sören Lange, Univ. Giessen, PANDA Hadron Physics Meson2008

The Pellet Target

MVD (Micro Vertex Detector)

- 4 barrels & 8 disks
 - inner layers pixels
 - outer layers strips
 - forward mixed

Silicon Pixel Detectors

- 120 modules
- 100x100 µm² pixel size
- ~10⁷ readout channels
- maximum rate
 <10 MHits s⁻¹ per module
- Radiation length ~1% X₀ per layer
- Silicon Strip Detectors
 - 400 modules
 - ~0.5 m² active area
 - 7x10⁴ readout channels

STT (Straw Tube Tracker)

- ~4100 tubes, axial or skewed (15 double layers)
- R=15.5-41.5 cm
- L=1.5m
- (only) m=50 kg
- tube diameter 10mm wall Mylar, 30µm
- anode wire W/Re, 20µm
- spatial resolution
 σ_{rφ}[~] 150μm (axial layers)
 s_z[~] 3-10mm (skewed layers)
- gas 90%Ar,10%CO₂ over-pressure for stabilization p=2 bar
- radiation length ~1-1.3% X₀
- wire U=2 kV
- $\delta p_T/p_T \simeq 1.2\%$
- prototype under investigation

TPC (Time Projection Chamber)

- R=15.5-41.5 cm
- 135 padrows
- 135,169 pads of 2x2 mm²
- Multi-GEM for amplification and ion backflow suppression
- Gas: Ne/CO₂ (+CH₄/CF₄)
- 50-70 µs drift time
 700 events pile-up
- gating grid continously open
- δp/p~1%
- prototype under investigation

EMC (Electromagnetic Calorimeter)

~17,200 crystals PbWO₄ (radiation hard, fast τ_{Decay}~6 ns) 28 X₀ dE/dx=13.0 MeV/cm

EMC (Electromagnetic Calorimeter)

Jens Sören Lange, Univ. Giessen, PANDA Hadron Physics

MUO (Muon Detector)

- R = 1.3–1.8 m
- tubes (for x coordinate) gold plated tungsten wire, d=0.05 mm, L=4 m, wire U=+3.6 kV, cathode U=-1.2 kV
- copper strips (for z coordinate) U=+1.8 kV
- ! pad size 1x1 cm²

Jens Sören Lange, Univ. Giessen, PANDA Hadron Physics Mes

Meson2008

Panda Physics Example #1:

Charmonium X(3872)

X(3872) – a New Charmonium State

■ C=+1

- can not be produced in e⁺e⁻ formation
- unique for Panda
- does not fit into potential model
- mass within 1 MeV of DD* mass molecule?
 - $m \simeq 2m_{deuteron}$
- binding energy small radius estimate E=0.6 MeV ! <r> = 2.9^{+∞} __0.9 fm Braaten, QWG 2007 (average, not tail)

Belle, Phys. Rev. Lett.91(2003)262001 CDF-II, Phys. Rev. Lett.93(2004)072001 Phys. Rev. Lett.93(2004)162002 **D0**. BaBar, Phys. Rev. D71(2005)071103

Jens Sören Lange, Univ. Giessen, PANDA Hadron Physics

Meson2008

X(3872) Events in Panda

XYZ coordinates / cm 50-40-30-20-10-0--10--20--30--40-30 40 50 50000 180000 -50--40 -30 -20 -10 0 10 20 -50

PandaRoot Simulation X(3872) ! $J/\psi \pi^+ \pi^-$ TPC digitization, MVD digitization

ψ'! J/ψ π⁺ π⁻ Mark II Experiment, 1973

X(3872) Events in Panda MVD+TPC PandaRoot Simulation

Jens Sören Lange, Univ. Giessen, PANDA Hadron Physics Meson2008

X(3872) at Panda, Invariant Mass Reconstruction

PandaRoot Simulation X(3872) ! J/ $\psi \pi^+ \pi^-$ TPC digitization, MVD digitization Conformal Map Track Finder

J/Psi Mass Cut 3σ | p_z | < 0.05 GeV/c (suppress J/ ψ ! e⁺ e⁻ γ)

Expected Yield: σ ·BR \simeq 250 pb, N~200 events per day

X(3872)! J/ $\psi \pi^+ \pi^-$ Event, Panda Simulation

Main Background: $pp! \pi^+ \pi^- \pi^+ \pi^-, \sigma \sim 0.05 \text{ mb}$ both pions mis-identified and in J/ ψ mass region, S/N~1/24

Panda will be able to measure the width of the X(3872)

Kinematic Fit: Vertex Constraint and Mass Constraint

$h_{\mathbf{c}}$! η_{**c**}γ ! ηπ^{**0**}π^{**0**}γ ! γγγγγγ

7 photon final state, $\sigma = 16.8 \pm 2.7 pb$ (*E*835) x BR($\eta_c ! \eta \pi^0 \pi^0$)

Jens Sören Lange, Univ. Giessen, PANDA Hadron Physics Meson2008

Panda Physics Example #2:

Charmed Mesons D_{SJ}

BaBar, Phys. Rev. Lett. 90(2003)242001 $D_{s0}(2317)$ 140 (b) 120 events/5 MeV/c² 100 80 60 found by BaBar, 2003 40 20 [c s] L=1 meson $\bar{p}p$ 0 2.3 2.4 2.1 2.2 2.5 Non-understood: $m(D_{c}\pi^{0}) \text{ GeV/c}^{2}$ $\simeq 100 \text{ MeV}$ lower mass s0than predicted from established potential models Godfrey, Isgur, PRD 32(1985)189 π Chiral partner to ground state? m [GeV/c²] Nowak, Rho, Zahed Acta Phys. Polon. B35(2004)2377 for Panda: production at threshold 2.6 $\sqrt{s} = 4.306 \text{ GeV}$ Dal $(p_{pbar} = 8.8931 \text{ GeV/c})$ (2458)D⁰K D_{sJ} 2.2 8 final states (2317) D_s^* **Reconstruction full exclusive** (for background rejection) 1.8 2+ 3-0-1- 0^{+}

Fast Simulation

Detector Resolutions parametrized 1-1.5 kHz Simulation & Reconstruction Rate

Full Simulation

Geant3.15 ≤1 Hz Data Simulation & Reconstruction Rate

for pp ! D+ D-, D⁰ D⁰ See Talk by Rene Jäkel, June 7, 17:10

Forward Spectrometer: see Aleksandra Wronska's Talk, June 7, 17:30

Summary

- Panda will offer unique possibilities for QCD studies
 - Charmonium Spectroscopy
 - all quantum numbers in formation, <u>C=+1</u> states
 - highly excited states (n=3,4,...,L=2,3,...) mass>4.75 GeV (not accessible at BES-III or Super-Belle)
 - measure the width using cooled antiprotons
 - Charmed Mesons D_{sJ}
 - Double Hypernuclei
 - Glueballs, light (u,d,s) Hybrids
 - (Unpolarized) Drell-Yan ! Transverse Spin Physics
 - $p \overline{p} ! \gamma \gamma$, Generalized Parton Distributions
 - Charm in the Nuclear Medium
 - G_E, G_M Formfactors ! see talk by Frank Maas, June 7, 09:00
 - And maybe more ...

The PANDA Collaboration

More than 420 physicists from 55 institutions in 17 countries

U Basel **IHEP Beiiina** U Bochum U Bonn U & INFN Brescia U & INFN Catania Cracow JU,TU, IFJ PAN **GSI** Darmstadt TU Dresden JINR Dubna (LIT,LPP,VBLHE) U Edinburgh **U** Erlangen NWU Evanston U & INFN Ferrara U Frankfurt **I NF-INFN Frascati**

U & INFN Genova U Glasgow U Gießen **KVI** Groningen U Helsinki IKP Jülich I + II **U** Katowice IMP Lanzhou U Mainz U & Politecnico & INFN Milano U Minsk Moscow, ITEP & MPEI TU München U Münster **BINP** Novosibirsk LAL Orsay

U Pavia **IHEP** Protvino **PNPI** Gatchina U of Silesia U Stockholm **KTH Stockholm** U & INFN Torino Politechnico di Torino U Oriente, Torino U & INFN Trieste **U** Tübingen U & TSL Uppsala U Valencia SMI Vienna **SINS** Warsaw U Warsaw