BEPCII and **BES3**

10th International Workshop on Meson Production, Properties, and Interation Krakow, Poland June 6-10, 2008

> Frederick A. Harris June 10, 2008 For the BES Collaboration

OUTLINE

- Introduction
- BEPCII
- BES3 and status
- BES3 physics
- TOF monitoring system
- Summary

Introduction - BES2

CM Energy ranges from 2 to 5 GeV Luminosity at $J/\psi \sim 5 \times 10^{30}$ cm⁻² s⁻¹

A unique e⁺e⁻ machine in the τ-charm energy region from 1989 - until CLEOc (2003).

The future of BEPC

- Decision to build BEPC in the early 1980s was a great success:
 - Rich physics results: (See talk by Xiaoyan Shen)
 - A total of ~120 papers in PRL, PRD, PLB, etc.
 - A total of ~300 entries in the Particle Data Book.
 - Several highlights well known to the community.
 - Established foundation of particle physics and its related technology in China.
 - Started the era of synchrotron radiation studies in China.
 - Technology transfer.
- In the 1990s, there was discussion of the future. The conclusion was to continue tau-charm physics with a major upgrade of the accelerator and detector (BEPCII/BES3).
- The physics window is precision charm physics and the search for new physics.
 - High statistics: high luminosity machine + high quality detector.
 - Small systematic error: high quality detector.

We are unique

CLEOc stopped in March 2008.

Tau charm physics with BEPCII/BES3:

- In transition region between pQCD and non-pQCD.
- Can provide calibrations and tests of lattice QCD.
- Rich spectra of light hadrons for quark model tests and searches for new hadrons.
- Rich gluonic matter production for tests of QCD.
- Near threshold production for tau and charm. Can provide very high precision measurements of standard model parameters and tests of quantum correlations.

BEPCII: a high luminosity double-ring collider

BEPCII Design

Energy range	1 – 2.1 GeV	
Optimum energy	1.89 GeV	
Luminosity	1 x 10 ³³ cm ⁻² s ⁻¹ @ 1.89 GeV	
Injection	Full energy injection: 1.55 – 1.89 GeV Positron injection rate > 50 mA/min	
No. of bunches	93	
Current	0.91 A	
Bunch length	1.5 cm	
Synchrotron mode	250 mA @ 2.5 GeV	

Use many bunches and SC mini-beta.

BEPCII Status

- Nov. 2006 start commissioning; beam stored in storage ring.
- Mar. 2007 e e collisions with normal magnets.
- June 2007 SR radiation for users at 2.5 GeV/c; 200 mA, τ = 5.5 hr.
- Aug. 2007 beam current reached 0.5 A.
- Nov. 2007 e^+e^- with SC quads; collisions with 400 ma and 99 bunches.

BEPCII Status

• May 15, 2008: detector at IP; installing SC quads and beam pipe.

• June: expect collisions.

MDC Parameters

R inner: 63mm ; R outer: 810mm

Length (out.): 2582 mm

Inner cylinder: 1.2 mm Carbon fiber

Outer cylinder: 11.5 mm CF with 8 windows

Sense wire : 25 micron gold-plated tungsten (plus 3% Rhenium) --- 6796

Layers (Sense wire): 43 (19 axial, 24 stereo)

Field wire: 110 micron gold-plated Aluminum 21884				
Gas: He + C3H8 (60/40)	$\sigma_r \sim 130 \ \mu m$			
Cell: inner chamber 6 mm outer chamber 8.1 mm	$\frac{\sigma_P}{P} \sim 0.5\% \text{ @1GeV/C}$			
Polar angle: cos θ < 0.83 (all layers) < 0.93 (20 layers)	$\sigma_{\frac{dE}{dx}}$ 6.04			
Expected performance	$\frac{\overline{dE}}{dx} \sim 0.\%$			

MDC construction

MDC wiring

Cosmic ray test of completed MDC

CsI(Tl) crystal calorimeter

- Design goals:
 - Energy: 2.5% @ 1GeV
 - Energy range: 20 MeV- 2 GeV
 - Spatial: 0.6cm @ 1GeV

- Crystals:
 - $L = 28 \text{ cm} (15 \text{ X}_0)$
 - $A = (5.2 \times 5.2 6.4 \times 6.4) \text{ cm}^2$
 - Barrel: 5280 w: 21564 kg
 - Endcaps: 960 w: 4051 kg
 - Total: 6240 w: 25.6 T

CsI(Tl) crystal calorimeter

- Readout:
 - 2 PDs + 2 preamps + 1 amp
 - PD: Hamamatsu S2744-08
 - 12480 PDs total (1 cm x 2 cm)
 - Preamp noise: < 220 keV

Structure of EMC

Crucial for particle ID and for fast trigger.

- Barrel
 - 50mm x 60mm x 2320 mm (inner layer).
 - BC408
 - 2 layers 88 in each
 - Radius from 810 to 930 mm.
- Endcap
 - 48 fan shaped pieces each end.
 - BC404
- PMT: Hamamatsu R5942 fine mesh
 - 2 on each barrel scintillator
 - 1 on each endcap counter
- Resolution
 - Barrel: σ_T = 100 ps
 - Endcap: $\sigma_T = 110$ ps

TOF - IHEP TOF electronics - USTC

Structure of TOF

Structure of Barrel TOF

Structure of Endcap TOF

Superconducting Magnet

Coil: single layer solenoid Cooling mode: two phase helium force flow

Superconductor: Al stabilized NbTi/Cu Winding: inner winding Cold mass support: tension rod Thermal shield: LN₂ shield, MLI Flux return: barrel/end yoke, pole tip

First of its kind built in China.

Cryostat		
Inner radius	1.375m	
Outer radius	1.7m	
Length	3.91m	
Coil		
Mean radius	1.482m	
Length	3.52m	
Cable dimension	3. 7mm*20mm	
Electrical parameters		
Central field	1. OT	
Nominal current	3650A	
Inductance	2H	
Stored energy	10MJ	
Cold mass	3. 6ton	
Total Weight	15ton	
Radiation thickness	2X ₀	

BESIII SC Magnet Progress

Thermal insulation

BESIII SC Magnet Progress Sept. 19, 2006

Voltage curve shows that the magnet is in super-conducting state.

Magnetic field 10029.8 Gauss.

Field mapping of magnet completed.

Muon Detector

Barrel

Endcap

RPCs

- Electrodes made from a special type of phenolic paper laminate on bakelite.

- Have good surface quality (~200nm).
 Extensive testing and long term reliability testing done.
 Have high efficiency, low counting rate and dark current, and good long-term stability .
- One dimension read-out strips (4 cm wide) 10,000 channels.
- Gas: Ar: C₂H₂F₄: Isobutane = 50:42:8
- HV voltage: 8000V; •
- One module contains two RPC layers and one readout layer.

Installation

Installation complete

Online computer room

Particle ID Summary

• TOF

Two layer barrel time-of flight, time resolution < 90ps</p>

I layer endcap TOF, time resolution ~ 110ps

dE/dx

• Resolution ~ (6-7)%, $3\sigma K/\pi$ separation up to 600MeV/c

• EMC

CsI crystal

Energy deposition, "shape" of shower

MUC

cut off momentum, as low as 500MeV

• μ -ID efficiency > 90%, π punch-through < 5% @ 1GeV

Provide good $e/\mu/\pi/K/p$ separation in large solid angle coverage of BES3 detector

(2)

Particle ID

K/pi separation

Proton/Kaon separation

- K/π likelihood combines TOF and dE/dx information.
- For K /π separation, efficiency > 90% and contamination rate < 10% @ 1GeV/c.
- e likelihood combines TOF, dE/dx and EMC information.
- Excellent electron-ID is expected in full momentum range.

Commissioning

Trigger, DAQ, and Detector (MDC, EMC, TOF, Muon) were commissioned in spring of this year with cosmic rays.

Commissioning - Cosmic Ray Event

Recent History

- 2/2003 Official approval of BEPCII/BES3 project.
- 7/2004 BES2 detector shutdown.
- 5/2005 Magnet yoke and muon chamber installation.
- 6/2006 Super conducting magnet cool down.
- 6/2007 Magnetic field mapping.
- 8/2007 EMC installation.
- 10/2007 MDC/TOF installation.
- 1/2008 Cosmic ray run.
- 6/2008 BES3 detector at IR.
- 6/2008 Joint tuning of detector and machine.

May 2008 - At IR

Physics Topics at BES3

- Open charm factory :
 - Absolute BR measurements of D and Ds decays
 - Rare D decay
 - D^0 D^0 bar mixing
 - CP violation, strong phase.
 - f_{D+} , f_{Ds} form factors in semi-leptonic D decays
 - precise measurement (1.6% stat.) of CKM (Vcd, Vcs)
 - light meson spectroscopy in D⁰ and D⁺ Dalitz plot analyses.

Physics Topics at BESIII

- Light hadron spectroscopy.
- Charmonium: J/ψ , $\psi(2S)$, $\eta_c(1S)$, $\chi_{c\{0,1,2\}}$, $\eta_c(2S)$, $h_c({}^{1}P_1)$, $\psi(1D)$, etc.
- New Charmonium states above open charm threshold.
- Exotics : hybrids, glueballs, and other exotics in J/ψ and $\psi(2S)$ radiative decays.
- Baryons and excited baryons in J/ψ and $\psi(25)$ hadronic decays.
- Mesons and mixing of quark and gluon in J/ ψ and ψ (25) decays.
- Electromagnetic form factors and QCD cross section (R values).
- tau mass and tau physics near the threshold.
- · Search for new physics.

Very rich and interesting energy region.

Production

Average Lum: $\mathcal{L} = 0.5 \times \text{Peak Lum.}$; One year data taking time: T = 10^7s

 $N_{event}/year = \sigma_{exp} \times \mathcal{L} \times T$

Resonance	Mass(GeV) CMS	Peak Lum. (10 ³³ cm ⁻² s ⁻¹)	Physics Cross Section (nb)	Nevents/yr	
J/ψ	3.097	0.6	3400	10 × 10 ⁹	←
τ	3.670	1.0	2.4	12×10^{6}	
ψ (25)	3.686	1.0	640	3.2 × 10 ⁹	←
D ⁰ D ⁰ bar	3.770	1.0	3.6	18 × 10 ⁶	
D⁺D⁻	3.770	1.0	2.8	14 × 10 ⁶	
DsDs	4.030	0.6	0.32	1.0 × 10 ⁶	
DsDs	4.140	0.6	0.67	2.0 × 10 ⁶	

Huge J/ $\psi\,$ and $\psi(2S)\,$ samples at BES3

A review (Yellow Book): tau-charm physics at BES3 done soon.

Hadron spectroscopy - light scalars:

- Lattice QCD predicts the lightest 0⁺⁺ scalar glueball mass ~ 1.6 GeV.
- Radiative ψ decay is the ideal glueball hunting ground!

X(1835)

Study of X(1835) at BES3 using $J/\Psi \rightarrow \gamma \eta' \pi^+ \pi^-$, $\eta' \rightarrow \eta \pi^+ \pi^-$

Charmonium spectroscopy

Precise measurement of η_c mass provides information on the hyperfine (spin-spin) splitting of η_c and J/ Ψ .

 $M(\eta_c)$ current status

Status of $\Gamma_{tot}(\eta_c)$ even worse!

W.-M. Yao et al. (Particle Data Group), J. Phys. G 33, 1 (2006)

Br(J/ $\Psi \rightarrow \gamma \eta_c$) is off tool $\Gamma(J/\psi \rightarrow \gamma \eta_c) = 4\alpha e_Q^2 k^3 |\int \psi_f \psi_i d^3 r|^2 / 3m_Q^2 = 2.85 keV$

Predicts: Br =
$$\frac{\Gamma_{\gamma J/\psi}}{\Gamma_{tot}}$$
 = 3.1%
 $CLEO: 1.98 \pm 0.09 \pm 0.30\%$
 $arXiv:0805.0252$

At BES3, measure the inclusive properties of the η_{c} with > 10x improved precision:

$$J/\psi \to \gamma \eta_c, \eta_c \to \pi^+ \pi^- \pi^+ \pi^-$$

 $m = 2.9808 \pm 0.0015 \text{ GeV}$ $\Gamma = 0.0256 \pm 0.0058 \text{ GeV}$

Precision CKM measurements

Determined from charmed meson leptonic and semi-leptonic branching ratios:

	Current	BES3
V _{cd}	5%	< 1%
V _{cs}	10%	< 1%

Tau mass measurement

BESIII Collaboration

Institute of High Energy Physics University of Science and Technology Peking University Tsinghua University Shangdong University Nankai University University of Zhejiang University of Zhengzhou Nanjing Normal University Nanjing University Shanxi University Sichuan University Henan Normal University Huazhong Normal University Wuhan University Zhengzhou University Zhongshan University Liaoning University Hunan University Guangshi University

Guangshi Normal University Hongkong University Chinese University of Hongkong

University of Hawaii University of Washington University of Tokyo Joint Institute of Nuclear Research, Dubna Budker Institute of Nuclear Physics, Novosibirsk GSI University of Bochum University of Giessen University of Minnesota University of Rochester University of Florida Carnegie Mellon University

BESIII TOF Monitoring System - built at UH

and an all he

BESIII TOF Monitoring System

- Monitor the amplitude and time performance of each channel including PMTs and electronics.
- Concept:
 - Use fiber cable bundles (2 cables) to distribute light to barrel and endcap TOF counters.
 - Use light splitter to illuminate one bundle at a time. Electronic switch

- 1. Laser diode
- 2. Beam splitter (5%-95%)
- 3. Prismatic beam splitters (50-50)
- 4. Shutters
- 5. Reference PMTs
- 6. Diffusers
- 7. Fiber bundles

TOF Monitoring

West Barrel TOF's Qm and Qsigma vs. PMT number.

TOF Monitoring

West Barrel TOF's Tmean and Tsigma vs. PMT number.

Accepted by NIM, arXiv:0804.4260 [physics.ins-det]

Summary

- BEPCII/BESIII complete.
- Commissioning of detector/machine soon.
- Rich physics program after CLEO-c. Complementary to B-factories.
- Many results for Meson 2010!

Particle ID

µ/pi separation

Red: two parameters Blue:four parameters