

10th International Workshop on Meson Production, Properties and Interaction, 6-10 June, Kraków, Poland

Dielectron measurements in NN interactions at a beam energy of 1.25 GeV with HADES

Tetyana Galatyuk for the HADES collaboration

Outline

- Motivation
- The HADES spectrometer
- Data analysis
- Results np / pp at 1.25 GeV
- Summary

Motivation

Excitation function of the multiplicity of excess pairs (triangles) in the mass range $0.15 < M_{ee}/GeV/c^2 < 0.55$ in collisions compared to light hadron production

 Measured pair excess in CC scales with beam energy as pion production not like η production!

 \rightarrow at SIS energies effectively all pions come from resonance decay

Need for a quantitative understanding of elementary processes

Elementary collisions with HADES

HADES experiment at SIS18, GSI

Geometry

- Full azimuth, polar angles 18° - 85°
- Pair acceptance ≈ 0.35

Particle identification

RICH, TOF/TOFino, Pre-Shower
 Detector, FW hodoscope: added
 2007

Low-mass tracking

→ Super conducting toroid magnet → Multi-wire drift chamber (MDC), single cell resolution \approx 100 µm

Trigger

- LVL1: charge particle multiplicity
- LVL2: single electron trigger

HADES experiment at SIS18, GSI

Experimental data (raw data)

Efficiency corrected spectra

Phase space coverage

- n+p p_t spectrum is more soft!
- recent calculation on di-electron bremsstrahlung in intermediate-energy pn collisions [L.P. Kaptari and B. Kämpfer Nucl. Phys. A 764 (2006)] show an enhancement of NN-Bremss. in the pn case
- does enhanced NN-Bremss. explain measured np data?

pp and np data compared to model (PLUTO – known sources)

- model calculations: Δ , η (constrained by CELSIUS/WASA data)
- large excess in n+p reactions (~ factor 5) above Δ, η
- no "quasielastic" Bremsstrahlung included!!!

Dielectron yield ratio pn / pp

Efficiency and acceptance corrected *pp* data, comparison to transport model calculation

 $\Delta \rightarrow e^+e^-N$ seems to explain e^+e^- yield in p+p at 1.25 GeV

Efficiency and acceptance corrected *np* data, comparison to transport model calculation

Data are not explained satisfactorily!

- Much lower background
- → Allows determination of the (∆ →pe⁺e⁻) branching ratio and, with sufficient statistics, of the electromagnetic transition formfactor

Identification of the excess

Resonance Dalitz decay

Higher lying baryonic resonances fully contribute to the mass region below the vector meson pole mass due to off-shell propagation of intermediate VM!

Can comparisons between the CC, pp, and pd data shed light on the question of the excess?

- Pair excess observed in CC data has been traced back to anomalous pair production in np collisions
- Dielectron yield in CC data reproduced by proper scaling of measured e⁺e⁻ production in NN interactions

e⁺e⁻ yield in C+C data underestimated theoretically because of insufficient treatment of electromagnetic transition formfactor!

he most bed	utiful sea has	n't been crossed	yet.tatus/Comme
wen't said v	0euurijui wor	us i wuilleu lo	Analysis finished
2005		Ar+KCI 1.75 AGeV	Analysis ongoing
2006	p + p 1.25 GeV		Analysis ongoing
2007	p + p 3.5 GeV d + p 1.25 AGeV	(Nazim Hikmet)	
Sep. 2008	p + A 3.5 GeV		
2008/9	Upgrade RPC, DAQ		
2009		Ni + Ni	Planned
2010	π + Ν, Α		1
2011		Au + Au	1
> 2011		Hades goes FAIR (8 AGeV)	

HADES COLLABORATION

G. Agakíshíev⁸, C. Agodí¹, A. Balanda^{3,e}, G. Bellía^{1,a}, D. Belver¹⁵, A. Belyaev⁶, A. Blanco², M. Böhmer¹¹, J. L. Boyard¹³, P. Braun-Munzínger⁴, P. Cabanelas¹⁵, E. Castro¹⁵, S. Chernenko⁶, T. Christ¹¹, M. Destefanis⁸, J. Díaz¹⁶, F. Dohrmann⁵, A. Dybczak³, T. Eberl¹¹, L. Fabbietti¹¹, O. Fateev⁶, P. Finocchiaro¹, P. Fonte^{2,6}, J. Friese¹¹, I. Fröhlich⁷, T. Galatyuk⁴, J. A. Garzón¹⁵, R. Gernhäuser¹¹, A. Gíl¹⁶, C. Gílardí⁸, M. Golubeva¹⁰, D. González-Díaz⁴, E. Grosse^{5,c}, F. Guber¹⁰, M. Heilmann⁷, T. Hennino¹³, R. Holzmann⁴, A. Ierusalimov⁶, I. Iori^{9,d}, A. Ivashkin¹⁰, M. Jurkovic¹¹, B. Kämpfer⁵, K. Kanaki⁵, T. Karavicheva¹⁰, D. Kirschner⁸, I. Koenig⁴, W. Koenig⁴, B. W. Kolb⁴, R. Kotte⁵, A. Kozuch^{3,e}, A. Krása¹⁴, F. Krízek¹⁴, R. Krücken¹¹, W. Kühn⁸, A. Kugler¹⁴, A. Kurepín¹⁰, J. Lamas-Valverde¹⁵, S. Lang⁴, J. S. Lange⁸, K. Lapídus¹⁰, L. Lopes², M. Lorenz⁷, L. Maier¹¹, A. Mangiarotti², J. Marín¹⁵, J. Markert⁷, V. Metag⁸, J. Micel⁷, B. Michalska³, D. Mishra⁸, E. Morinière¹³, J. Mousa¹², C. Müntz⁷, L. Naumann⁵, R. Novotny⁸, J. Otwinowski³, Y. C. Pachmayer⁷, M. Palka⁴, Y. Parpottas¹², V. Pechenov⁸, O. Pechenova⁸, T. Pérez Cavalcantí⁸, J. Pietraszko⁴, W. Przygoda^{3,e}, B. Ramstein¹³, A. Reshetin¹⁰, M. Roy-Stephan¹³, A. Rustamov⁴, A. Sadovsky¹⁰, B. Saíler¹¹, P. Salabura³, A. Schmah⁴, R. Símon⁴, Yu.G. Sobolev¹⁴, S. Spataro⁸, B. Spruck⁸, H. Ströbele⁷, J. Stroth^{7,4}, C. Sturm⁷, M. Sudol⁴, A. Tarantola⁷, K. Teilab⁷, P. Tlusty¹⁴, M. Traxler⁴, R. Trebacz³, H. Tsertos¹², I. Veretenkin¹⁰, V. Wagner¹⁴, H. Wen⁸, M. Wisniowski³, T. Wojcik³, J. Wüstenfeld⁵, S. Yurevích⁴, Y. Zanevsky⁶, P. Zhou⁵, P. Zumbruch⁴

¹ Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, 95125 Catania, Italy

- ² LIP-Laboratório de Instrumentação e Física Experimental de Partículas , 3004-516 Coimbra, Portugal
- ³ Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland
- ⁴ Gesellschaft für Schwerionenforschung mbH, 64291 Darmstadt, Germany
- ⁵ Institut für Strahlenphysik, Forschungszentrum Dresden-Rossendorf, 01314 Dresden, Germany
- ⁶ Joint Institute of Nuclear Research, 141980 Dubna, Russia
- ⁷ Institut für Kernphysik, Johann Wolfgang Goethe-Universität, 60438 Frankfurt, Germany
- ⁸ II.Physikalisches Institut, Justus Liebig Universität Giessen, 35392 Giessen, Germany
- ⁹ Istituto Nazionale di Fisica Nucleare, Sezione di Milano, 20133 Milano, Italy
- ¹⁰ Institute for Nuclear Research, Russian Academy of Science, 117312 Moscow, Russia
- ¹¹ Physik Department E12, Technische Universität München, 85748 München, Germany
- ¹² Department of Physics, University of Cyprus, 1678 Nicosia, Cyprus
- ¹³ Institut de Physique Nucléaire (UMR 8608), CNRS/IN2P3 Université Paris Sud, F-91406 Orsay Cedex, France
- ¹⁴ Nuclear Physics Institute, Academy of Sciences of Czech Republic, 25068 Rez, Czech Republic
- ¹⁵ Departamento de Física de Partículas, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- ¹⁶ Instituto de Física Corpuscular, Universidad de Valencia-CSIC, 46971 Valencia, Spain

BONUS SLIDES

Normalization via pp elastic scattering

- Large acceptance (16% at 1.25 GeV), sys error in reconstruction $\leq 10\%$,
- sys. error of σ (elastic) = 21% @ 1.25 GeV

Tagging of quasi-free p+n reactions in d+p with FW

Expected signal: spectator model:

- η contribution from measured data:
- Celsius/WASA Calen et al.: Phys.Rev.C58(1998)2667, Phys.Rev.Lett 80(1998)2069,Phys.Rev.Lett.79(1997)2642
- fermi momentum distribution Paris potential
 : COSY-TOF EPJ A 29, 353-361 (2006)

Suppression of pp-elastic with FW conditions and TAT spectra

pp and dp from DLS

Comparison to DLS elementary reactions @ 1.04 GeV

