Modern View on the Resonance Parameter Extraction

<u>S. Ceci</u>, H. Haberzettl, S. Krewald, K. Nakayama, A. Svarc and B. Zauner (with S. Watson and J. Stahov)

The resolution of the (big) speed plot problem

<u>Meson 2008</u>, 10th International Workshop on Meson Production, Properties and Interaction

PDG: Poles and BW

N(1535) POLE POSITION

REAL PART

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT				
1490 to 1530 (≈ 1510) OUR ESTIMATE								
1502	ARNDT	06	DPWA	$\pi N \rightarrow \pi N, \eta N$				
1487	⁴ HOEHLER	93	SPED	$\pi N \rightarrow \pi N$				
1510±50	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$				
 We do not use the following 	data for averages	s, fits,	limits, e	tc. • • •				
1526	ARNDT	04	DPWA	$\pi N \rightarrow \pi N, \eta N$				
1525	VRANA	00	DPWA	Multichannel				
1510±10	⁵ ARNDT	98	DPWA	$\pi N \rightarrow \pi N, \eta N$				
1501	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$				
1499	ARNDT	91	DPWA	$\pi N \rightarrow \pi N$ Soln SM90				
1496 or 1499	⁶ LONGACRE	78	IPWA	$\pi N \rightarrow N \pi \pi$				
1525 or 1527	¹ LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$				
			TECN	COMMENT				
90 to 250 (~ 170) OUR ESTIMA	TE		TECN	COMMENT				
05	APNDT	06		$\pi N \rightarrow \pi N \pi N$				
95 260±80	CUTKOSKY	90		$\pi N \rightarrow \pi N$, ηN				
• • • We do not use the following	data for averages	0U fite	limits o	$\pi N \rightarrow \pi N$				
• • • We do not use the following	uata ior averages	, nes,						
130	ARNDT	04	DPWA	$\pi N \rightarrow \pi N, \eta N$				
102	VRANA	00	DPWA	Multichannel				
170±30	³ ARNDT	98	DPWA	$\pi N \rightarrow \pi N, \eta N$				
124	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$				
110	ARNDT	91	DPWA	$\pi N \rightarrow \pi N$ Soln SM90				
103 or 105	LONGACRE	78	IPWA	$\pi N \rightarrow N \pi \pi$				
135 or 123	¹ LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$				

small SP problem

W.-M. Yao et al. (Particle Data Group), J. Phys. G 33, 1 (2006) and 2007 partial update for edition 2008 (URL: http://pdg.lbl.gov)

N(1535) S₁₁

 $I(J^{P}) = \frac{1}{2}(\frac{1}{2})$ Status: ****

Most of the results published before 1975 were last included in our 1982 edition, Physics Letters **111B** 1 (1982). Some further obsolete results published before 1980 were last included in our 2006 edition, Journal of Physics, G **33** 1 (2006).

analyses w/o poles

CMB analyses

N(1535) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1525 to 1545 (≈ 1535) OUR ES	TIMATE			
1547.0± 0.7	ARNDT	06	DPWA	$\pi N \rightarrow \pi N. \eta N$
1534 ± 7	MANLEY	92	IPWA	$\pi N \rightarrow \pi N \& N \pi \pi$
1550 ±40	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
1526 ± 7	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$
 We do not use the following 	data for averages	, fits,	limits, e	tc. • • •
1546.7± 2.2	ARNDT	04	DPWA	$\pi N \rightarrow \pi N, \eta N$
1526 ± 2	PENNER	02C	DPWA	Multichannel
1530 ±10	BAI	01B	BES	$J/\psi \rightarrow p \overline{p} \eta$
1522 ±11	THOMPSON	01	CLAS	$\gamma^* p \rightarrow p \eta$
1542 ± 3	VRANA	00	DPWA	Multichannel
1532 ± 5	ARMSTRONG	99B	DPWA	$\gamma^* p \rightarrow p \eta$
1549.0± 2.1	ABAEV	96	DPWA	$\pi^- p \rightarrow \eta n$
1525 ±10	ARNDT	96	IPWA	$\gamma N \rightarrow \pi N$
1535	ARNDT	95	DPWA	$\pi N \rightarrow N \pi$
1542 ± 6	BATINIC	95	DPWA	$\pi N \rightarrow N \pi, N \eta$
1537	BATINIC	95B	DPWA	$\pi N \rightarrow N \pi N \eta$
1544 ±13	KRUSCHE	95	DPWA	$\gamma p ightarrow p \eta$
1518	LI	93	IPWA	$\gamma N \rightarrow \pi N$
1513	CRAWFORD	80	DPWA	$\gamma N \rightarrow \pi N$
1520	¹ LONGACRE	77	IPWA	$\pi N \rightarrow N \pi \pi$
1510	² LONGACRE	75	IPWA	$\pi N \rightarrow N \pi \pi$

2/10

<u>Meson 2008</u>, 10th International Workshop on Meson Production, Properties and Interaction

Resonance parameters

<u>Meson 2008</u>, 10th International Workshop on Meson Production, Properties and Interaction

Extraction method: The Speed Plot (SP)

• T matrix (BW)

- T_R = R / (M W i Γ/2)
- $|T_R|^2 = |R|^2 / [(M W)^2 + (\Gamma/2)^2]$
- T = T_R + T_B

Speed Plot

- SP = |dT/dW|
- (ignoring background contribution)
- $|dT_R/dW| = |R|/[(M W)^2 + (\Gamma/2)^2]$
- SP is assumed to be more than yet another extraction method:
 - SP corresponds to the time delay, the first derivative of phase shift over energy (in single channel case)
 - if TD is physical, SP must be physical too
 - no SP peak means there is no pole, meaning no resonance (and vice versa); the resonance existence criteria

Speed plot shows a problem

TABLE II. The N^* resonance pole parameters obtained by the analytic continuation method and speed plot in various channels. The N(?) stands for resonances unnamed in the RPP.

Resonan	ice	Analytic o	ontinuation			Speed-pl	lot method		
				πN	$\rightarrow \pi N$	πN	$\rightarrow \eta N$	ηN	$\rightarrow \eta N$
N^*	L _{212J}	Reµ	$-2 \text{Im}\mu$	$\text{Re}\mu$	$-2 \operatorname{Im} \mu$	$\text{Re}\mu$	$-2 \text{Im}\mu$	Reµ	$-2 \text{Im}\mu$
		(MeV)	(MeV)	(MeV)	(MeV)	(MeV)	(MeV)	(MeV)	(MeV)
N(1535)	S11	1517	190	1506	83	1531	388		
N(1650)	S ₁₁	1642	203	1657	183	1601	208	1632	179
N(2090)	S11	1785	420	1764	133			1917	423
N(1440)	P ₁₁	1359	162	1355	154	ST ^a	ST ^a	ST ^a	ST ^u
N(1710)	P11	1728	138	1722	121	1733	154	1679	151
N(?)	P ₁₁	1708	174		•••		• • •	•••	•••
N(2100)	P ₁₁	2113	345	2131	394	2122	357	2116	360
N(1720)	P ₁₃	1686	235	1706	219	1617	289	1641	252
N(1520)	D ₁₃	1505	123	1505	129	1527	129		
N(1700)	D ₁₃	1805	130	1053	290	1809	120	•••	
N(2080)	D ₁₃	1942	476	1960	270				
N(1675)	D ₁₅	1657	134	1657	136	1651	149	1620	108
N(2200)	D ₁₅	2133	439	2134	375	2141	422	2130	401
N(1680)	F ₁₅	1664	134	1665	135	1665	131		
N(1990)	F ₁₇	1990	303	1992	236	1979	362		
N(?)	G ₁₇	1740	270	1740	278	1774	148		
N(2190)	G ₁₇	2060	393	2051	333	1970	256		
^a Subthreshold.	M/I	[¬] <= 5/10 ₪	/leV 5/10	MeV < M/	′Γ <= 10/2	20 MeV	M/Γ >	10/20 Me	V
5 / 10			Meson 200 Meson Prod	08, 10 th Inter duction, Prop	rnational Wor erties and In [.]	kshop on teraction	June 9 ^{th,} 2008		

Regularization Method (RM): T matrix has pole

 $f(z) = (\mu - z) t(z)$ $f(\mu) = \sum_{n=1}^{N} \frac{f^{(n)}(x)}{n!} (\mu - x)^n + R_N(x, \mu).$

$$\sum_{n=0}^{\infty} n!$$

$$f^{(n)}(x) = (\mu - x) t^{(n)}(x) - n t^{(n-1)}(x),$$

$$|f(\mu)| = \frac{|t^{(N)}(x)|}{N!} |a+ib-x|^{(N+1)}.$$

$$\frac{(a-x)^2+b^2}{\sqrt[N+1]{|f(\mu)|^2}} = \sqrt[N+1]{\frac{(N!)^2}{|t^{(N)}(x)|^2}}.$$

Meson 2008, 10 th International Workshop on	
Meson Production, Properties and Interaction	
	_

Regularization method: The Results

TABLE III. The comparison of N^* resonance pole parameters obtained by the analytic continuation method, and the regularization method for πN , $\eta N \rightarrow \eta N$, and $\pi N \rightarrow \eta N$ processes. Numbers in subscript are the expansion order required to obtain convergent result.

Resona	nce	Analytic of	continuation	Regularization method					
				πN	$\rightarrow \pi N$	πN	$\rightarrow \eta N$	$\eta N \rightarrow \eta$	
N^*	L _{212J}	Reµ	$-2 \mathrm{Im}\mu$	$Re\mu$	$-2 \text{Im}\mu$	Reµ	$-2 \text{Im}\mu$	$\operatorname{Re}\mu$	$-2 \text{ Im}\mu$
		(MeV)	(MeV)	(MeV)	(MeV)	(MeV)	(MeV)	(MeV)	(MeV)
N(1535)	S ₁₁	1517	190	1522 _e	146				
N(1650)	S ₁₁	1642	203	1647	203	1645(10)	$211_{(10)}$		
N(2090)	S ₁₁	1785	420			•••			
N(1440)	P ₁₁	1359	162	13546	162(8)	ST ^a	ST ^a	ST^{a}	ST ^a
N(1710)	P ₁₁	1728	138	1729	150.0	1733(5)	133($1728_{(7)}$	142_{\odot}
N(?)	P ₁₁	1708	174	•••	•••	•••	•••	•••	
N(2100)	P ₁₁	2113	345	2120 _(c)	347(6	$2120_{(5)}$	$-347_{(i)}$	2120(6)	$-347_{(i)}$
N(1720)	P ₁₃	1686	235	1691 ₍₄)	235(5	1691	234()	1691 ₅₎	$235_{(0)}$
N(1520)	D ₁₃	1505	123	1506	1240	•••		•••	
N(1700)	D ₁₃	1805	130	1806	132	1806	130(1)	•••	
N(2080)	D ₁₃	1942	476						
N(1675)	D ₁₅	1657	134	1658(4	138(5	1657 ₍₃₎	137()	1658 ₅₎	138(
N(2200)	D ₁₅	2133	439	2145	439.6	2144	435.	2144 6)	438(
N(1680)	F ₁₅	1664	134	1666(4)	136(4	1665(3)	136()	•••	
N(1990)	F ₁₇	1990	303	$2016_{(1)}$	318(7	2015(5)	322()	•••	
N(?)	G17	1740	270	1749	280(6	1748	281	•••	
N(2190)	G ₁₇	2060	393	2068 _(*)	389(5)	•••	•••		
^a Subthresho	^{ld.} Μ/Γ	<= 5/10 N	leV 5/10	5/10 MeV < M/Γ <= 10/20 MeV				10/20 Me ^v	
7 / 10 Meson 200 Meson Prod			08 , 10 th Inte duction, Prop	<u>B</u> , 10 th International Workshop on uction, Properties and Interaction					

What about the small SP problem?

<u>Meson 2008</u>, 10th International Workshop on Meson Production, Properties and Interaction

Connection between RM and SP

$\frac{(a-x)^2 + b^2}{\sqrt[N+1]{ f(\mu) ^2}} = \sqrt[N+1]{\frac{(N!)^2}{ t^{(N)}(x) ^2}}.$	$rac{(a-x)^2+b^2}{\sqrt[N+1]{ f(\mu) ^2}}=\sqrt[N+1]{rac{(N!)^2}{ t^{(N)}(x) ^2}}.$
N = 1	 $\mathbf{N} = 0$
$ \mathbf{dt} \setminus \mathbf{dx} = \mathbf{r} / [(\mathbf{a} \cdot \mathbf{x})^2 + \mathbf{b}^2]$	 $ \mathbf{t} ^2 = \mathbf{r} ^2 / [(\mathbf{a} \cdot \mathbf{x})^2 + \mathbf{b}^2]$
Speed plot	 Breit-Wigner
$ dT_{R}/dW = R /[(M - W)^{2} + (\Gamma/2)^{2}]$	 $ T_R ^2 = R ^2 / [(M - W)^2 + (\Gamma/2)^2]$

Summary

- RM produces consistent pole positions (unlike SP)
- it can easily be applied to other PWA results (yellow marked)
- RM clearly shows resonance signal (parabolic shapes, cusps between resonances, ...)
- having exact and simple form enables us to build extensions and enhancements to it (the same goes for SP and BW)
- close future:
 - solution of the small SP (and RM) problem
 - finding poles from other PW analyses
 - analyzing KH80 SP poles

The
$$\pi N \to \eta N$$
 process is given by the invariant amplitude
 $A(W, \cos \theta^*) = \frac{4\pi}{\sqrt{q_r^{2*} q_\eta^*}} \left\{ \sum_{l=0}^{\infty} T_{l+} \left[\sqrt{(E_i^* + m)(E_f^* + m)}(W - m)P_l'(\cos \theta^*) + \sqrt{(E_i^* - m)(E_f^* - m)(W + m)P_{l+1}'(\cos \theta^*)} \right] + \sqrt{(E_i^* - m)(E_f^* - m)(W + m)P_{l+1}'(\cos \theta^*)} \right\}$
 $= \left\{ \sum_{l=1}^{\infty} T_{l-} \left[\sqrt{(E_i^* + m)(E_f^* + m)(W - m)P_{l+1}'(\cos \theta^*)} + \sqrt{(E_i^* - m)(E_f^* - m)(W + m)P_l'(\cos \theta^*)} \right] \right\}$
 $= \left\{ B(W, \cos \theta^*) = \frac{4\pi}{\sqrt{q_r^{2*} q_\eta^*}} \left\{ \sum_{l=0}^{\infty} T_{l+} \left[\sqrt{(E_i^* + m)(E_f^* + m)P_l'(\cos \theta^*)} + \sqrt{(E_i^* - m)(E_f^* - m)P_{l+1}'(\cos \theta^*)} + \sqrt{(E_i^* - m)(E_f^* - m)P_{l+1}'(\cos \theta^*)} \right] \right\}$
 $= \left\{ \sum_{l=1}^{\infty} T_{l-} \left[\sqrt{(E_i^* + m)(E_f^* + m)P_l'(\cos \theta^*)} + \sqrt{(E_i^* - m)(E_f^* - m)P_{l+1}'(\cos \theta^*)} + \sqrt{(E_i^* - m)(E_f^* - m)P_l'(\cos \theta^*)} \right] \right\}$
 $= \left\{ \sum_{l=1}^{\infty} T_{l-} \left[\sqrt{(E_i^* + m)(E_f^* + m)P_l'(\cos \theta^*)} + \sqrt{(E_i^* - m)(E_f^* - m)P_l'(\cos \theta^*)} + \sqrt{(E_i^* - m)(E_f^* - m)P_l'(\cos \theta^*)} + \sqrt{(E_i^* - m)(E_f^* - m)P_l'(\cos \theta^*)} \right] \right\}$.
W is the total c.m. energy,
 $= \left\{ \sum_{l=1}^{\infty} T_{l-} \left[\sqrt{(E_i^* + m)(E_f^* + m)P_l'(\cos \theta^*)} + \sqrt{(E_i^* - m)(E_f^* - m)P_l'(\cos \theta^*)} + \sqrt{(E_i^* - m)(E_f^* - m)P_l'(\cos \theta^*)} \right] \right\}$.
 $= \left\{ \sum_{l=1}^{\infty} T_{l-} \left[\sqrt{(E_i^* + m)(E_f^* + m)P_l'(\cos \theta^*)} + \sqrt{(E_i^* - m)P_l'(\cos \theta^*)} + \sqrt{$

Q&A: 2 Who (else) needs the speed plot?

Excited Baryon Program at JLab

A Contribution to the NSAC Long Range Plan

January 11, 2007

Editors: V. Burkert, R. Gothe, T.-S. H. Lee

Contributors:

I. Aznauryan, M. Bellis, C. Bennhold, W. Briscoe, V. Burkert, S. Capstick, P. Cole, V. Crede, R. Gothe, H. Haberzettl, B. Julia-Diaz, F. Klein, S. Krewald, T.-S. H. Lee, C. Meyer, V. Mokeev, V. Pascalutsa, E. Pasyuk, D. Richards, W. Roberts, A. Sandorfi, P. Stoler, L.C. Smith, I. Strakovsky, M. Vanderhaeghen, R. Workman.

IV. EXCITED BARYON ANALYSIS CENTER

The Excited Baryon Analysis Center (EBAC) was established at JLab in January, 2006 to provide theoretical support to the excited baryon program. EBAC's program has two components. The first one is to identify new baryon states and extract the N^* parameters

analyses must be examined. The validity of the often used speed-plot or time-delayed plot methods in extracting the N^* parameters from the determined partial-wave amplitudes should also be studied.

. . .

13/10

<u>Meson 2008</u>, 10th International Workshop on Meson Production, Properties and Interaction