Stopped K⁻ Physics with FINUDA

Paolo Camerini University of Trieste – INFN

FINUDA collaboration

Stopped K⁻ Physics at DAΦNE

The K⁻ can be stopped in thin targets (~ 0.2 ÷ 0.3 g cm⁻²) to produce e.g. hypernuclei

Physics topics (FINUDA @DAΦNE)

Strangeness Exchange reactions $K^- + N \rightarrow Y(\Lambda/\Sigma) + \pi$ If Y remains bound a hypernucleus forms

Hypernuclear spectroscopy

$$\mathbf{K}^{-}_{\text{stop}} + {}^{A}Z \rightarrow {}^{A}_{\Lambda}Z + (\pi^{-})$$

- Study of Λ -N and Σ -N interaction -Single particle models predictions
- Hypernuclear structure Study of Λ/Σ -nucleus potentials -astrophysical implications

Hypernuclear decays

- $\Lambda \rightarrow \pi N$ (mesonic weak decay) and $\Lambda N \rightarrow nN$, $\Lambda NN \rightarrow nNN$ (non mesonic weak decay)
- baryon-baryon strangeness changing weak processes in nuclear matter
- mesons medium modifications short range correlations •quark d.o.f.

Physics topics (FINUDA @DA Φ NE)

□Search for:

- → High N/Z (neutron rich) hypernuclei: $K^- + {}^{A}Z \rightarrow {}^{A}_{\Lambda}(Z 2) + \pi^+ ({}^{a}_{\Lambda}H, {}^{7}_{\Lambda}H...)$ Info on: neutron halo, low density Λ-n interaction, Λ-Σ coupling
- (Deeply) bound kaonic clusters: Ap,Ad,...detection K-A potential, K mass/condensation in nuclear matter, nuclear compressibility, chir.symm. rest.,
- > Study of K⁻ multinucleon absorption ($\Lambda p, \Lambda d$..detection)
- Σ–hypernuclei
- ➤ rare decays
- K⁺ charge exchange reactions

The FINUDA spectrometer

The FINUDA spectrometer

Detector performance

Weak decay of Λ hypernuclei

Mesonic weak decay (as free decay):

- $\Lambda \to p\pi^-$ B.R. 63.9% (Γ_{π^-})
- $\Lambda \rightarrow n\pi^0$ B.R. 35.8% ($\Gamma_{\pi 0}$); Not detectable by FINUDA
- lifetime τ_{Λ free} = 263 ps
- nucleons emitted with a momentum q~100MeV/c (Q~40MeV)
- → mesonic weak decay forbidden in (infinite) nuclear matter due to the Pauli blocking of the final state nucleon
- → allowed in light nuclei (π attraction by the medium, initial Λ momentum..., Pauli blocking less effective)

□ Non Mesonic weak decay (dominant A≥12) Q~170 MeV $\Lambda n \rightarrow nn$ (Γ_n) neutron induced decay

 $\Lambda p \rightarrow np$ (Γ_p) proton induced decay

 $\Lambda NN \rightarrow nNN (\Gamma_2)$ two-nucleon induced decay

$$\Gamma_{\rm T} = \Gamma_{\rm M} + \Gamma_{\rm NM}$$

$$\Gamma_{\rm NM} = \Gamma_{\rm n} + \Gamma_{\rm p} + \Gamma_{\rm 2}$$

NM Weak decay of Λ hypernuclei

NMWD: study of baryon-baryon weak interaction (and 3-baryons ΛNN int.) Slightly affected by nuclear structure (mom. Tranfer ~400MeV/c), test of short range correlations, ΔI=1/2 rule, quark d.o.f., rare decays...

Strong disagreement between exp. and theory until recently

 Γ_n/Γ_p puzzle: OPE: $\Gamma_n/\Gamma_p \sim 0.1$; EXP : $\Gamma_n/\Gamma_p \sim 1$

Experimentally difficult

-Hyp.nucleus identification (π)+ p/n detection necessary. High proton thresholds: low energy region missing (FSI and 2-N induced decays), model dependent data analysis $\rightarrow \Gamma_n / \Gamma_p$ puzzle unsolved for several years

Theory: OPE + kaons + heavier mesons exch.+ direct quark mechanisms

 Γ_n/Γ_p puzzle solved in correlated p/n back-to-back kinematics +non-trivial data interpretation (no FSI, no 2N abs)

¹²_AC: OME $\Gamma_n/\Gamma_p \sim 0.4$ [Garbarino,PRC69(04)]; EXP(KEK) : $\Gamma_n/\Gamma_p \sim 0.4$ [Kang,PRL96('06)]

Single proton spectra still incompatible with theor. predictions (Bauer et al, nucl-th/0602066)

¹²C (raw) excitation spectrum

 K^- + ${}^{12}C \rightarrow {}^{12}_{\Lambda}C$ + Π^-

Inclusive spectrum of negative pions from ¹²C targets. Hypernuclear peaks are visible even without any background subtraction

Proton induced NMWD in FINUDA

$\pi\text{-}$ and proton spectra from $^{12}{}_{\Lambda}\text{C}$ NMWD

Spectrum of negative pions for events with a proton detected in coincidence: red peak at 272 MeV/c (¹²_AC ground state)

Simulation of the background reaction **K- np** $\rightarrow \Sigma$ -**p** followed by the decay $\Sigma^- \rightarrow n\pi^-$ Fermi momentum distribution for nucleons selection criteria and quality cuts as for real data

MESON2008-Krakow-6/10 June 2008 Paolo Camerini

⁷Li targets: NMWD of ⁷_ALi

MESON2008-Krakow-6/10 June 2008 Paolo Camerini

⁶Li targets: NMWD of ⁵_AHe

Spectrum of negative pions for events in coincidence with a proton:

- A clear bump emerges at 275 MeV/c (ground state)
- The ground state of ${}^6_{\Lambda}$ Li is proton unbound so it will immediately decay:

 $^{6}{}_{\Lambda}\text{Li} \rightarrow {}^{5}{}_{\Lambda}\text{He} + p$

Comparison to other experimental data

FINUDA Collaboration, Nucl Phys. A (2008)

Target	Hypernucleus	R _p
¹² C	¹² _{_{\Lambda}}C	0.43±0.07
⁶ Li	⁵ _∆ He	0.28±0.09
⁷ Li	7 _∆ Li	0.37±0.09
⁷ Li	⁵ _∆ He	0.21±0.12
Mean of ⁶ Li and ⁷ Li values	⁵ _∧ He	0.25±0.07

•FINUDA provided for the first time data in an extended proton energy (and A) range where FSI and Λ NN decays dominate.

180

200

• Low energy behaviour similar in the 2 tgts •disagreement between expts.

First direct measurement of R_p (proton yield per prompt hypernuclear π)

Comparison with theoretical calculations

• New data important to constrain theories in low energy region

• ${}^{12}_{\Lambda}$ C: the FSI and the contribution of the two-nucleons induced NMWD appear to be too strong to reproduce the data (low en. peak + excess smearing)

MESON2008-Krakow-6/10 June 2008 Paolo Camerini

Kolmogorov-Smirnov test:

¹²_{Λ}C: probability of P=0.5 at a confidence level of 5% → Low compatibility

 ${}^{5}_{\Lambda}$ He: probability of P=0.65 at a confidence level of 75%

Comparison with theoretical models not satisfactory

Neutron-rich hypernuclei

Hypernuclei with a large neutron excess have been theoretically predicted (L. Majling, NPA 585 (1995) 211c).

The Pauli principle does not apply to the Λ inside the nucleus + *extra* binding energy (Λ "*glue-like*" role,dynamical contraction of the core nucleus) \Rightarrow a larger number of neutrons can be bound with respect to ordinary nuclei (extension of the neutron drip line)

Hypernuclear physics:

AN interactions at low densities, the role of 3-body forces (Λ – Σ coupling)

Neutron drip-line:

response of neutron halo on embedding of Λ hyperon, hypernuclear species with unstable nuclear core

T. Yu. Tretyakova and D. E. Lanskoy, Nucl. Phys. A 691: 51c, 2001.

Astrophysics:

Feedback with the astrophysics field: phenomena related to *high-density nuclear matter* in neutron stars (role of Σ).

S. Balberg and A. Gal, Nucl. Phys. A 625: 435, 1997.

Neutron-rich hypernuclei

Production mechanisms (2 steps \rightarrow low yield)

1) strangeness exchange+ charge exchange

Selection on impact parameter to minimize background

Neutron-rich hypernuclei

Data Taking 2006-2007 ress Work in progress π + spectra (production) in coincidence with low-energy π - (mesonic decay)

Higher statistics allows to effectively suppress backgrounds by asking the presence of a mesonic decay $\pi^{-...}$...statistical significance of a peak?

The search for (deeply) bound antikaon nuclear states

Theoretical predictions

First proposed by Wycech [NPA450(1986)]

Akaishi & Yamazaki (PLB535(2002), PRC65(2002), PLB613(0205)

Strong attractive I=0 Kbar-N interaction ($\rightarrow \Lambda(1405)$ as lightest Kbar-N bound state)

Nuclear K⁻ bound states formed on few body systems

- Strong(>100MeV) binding $\rightarrow \Sigma \pi$ channel closed \rightarrow **narrow** width (\rightarrow expt.lly detectable!)
- nucleus shrinking (high nuclear density~ $3\rho_0$)

Topics of interest: • K⁻-N interaction at varying ρ , • $\Lambda(1405)$ properties in n.m.,• K⁻ in medium mass modification...

Mares et al., NPA 770 (2006)

Sizeable binding energy (100-200 MeV), Γ >~50 MeV, possible only on heavier nuclei

Strongly debated subject

•Several theoretical papers but situation still unsettled (relevant region far below antiK-N threshold).

> Weise et al, [arXiv:0801.1647] K⁻-nuclear quasi-bound states can exist but $\Gamma \ge B_{K}$ especially if K-NN $\rightarrow \Lambda/\Sigma$ N channel into account

Experimental approaches

- Missing mass spectroscopy
 - Energy measurement of recoiling particles in the A(K⁻,N)X reaction
 - KEK-PS E471 (K⁻_{stop},N)
 - AGS E930 (K-in-flight, n) ¹⁵K-O: bound state at ~90 MeV
 - FINUDA (K⁻_{stop})
 - KEK-PS E549 (K⁻_{stop})

Invariant mass spectroscopy

- Detection of decay products of kaonic nuclear clusters (easier for light systems..)
 - $(K^{-}pp) \rightarrow \Lambda + p$
 - $(K^{-}ppn) \rightarrow \Lambda + d$
 - Typically (for stopped K⁻)
 - $\begin{array}{ll} & p_{p(\Lambda)} \sim 500 \; \text{MeV/c} \\ & p_{\pi(\Lambda)} < 200 \; \text{MeV/c} \end{array}$

 - p_p ~ 500 MeV/c
- Good p.i.d., low backround Λ -identification, angular correlations, high acceptance, high statistics are crucial items for this task
 - FOPI (Ni-Ni heavy ion collisions)

[see Hartmann's talk]

- FINUDA (K⁻_{stop})
- OBELIX (p He)
- KEK-PS E471-E549 ⁴He (K⁻_{ston} YN) [see Suzuki's talk]

For an extensive review of the experimental situation see Iwasaki's talk.

drawbacks: sizeable backgrounds, risk of fake signals

drawbacks: Collisional shift and broadening, multinucleon abs. backgnds.

K-pp invariant mass studies with FINUDA

Search for the [K-pp] bound systems

[K-pp]: lightest possible bound state

- ➢ Reaction under study K- A→[K⁻pp]+A['] via possible [K⁻pp] decay to ∧-p
- \checkmark \land recontruction
- study of Λ -p invariant mass
 and Λ -p angular correlation

- Λ p emitted mostly back-to-back (little FSI)
- Light targets only (3x ¹²C, 2x ⁶Li, 1x ⁷Li)

(Ap) invariant mass in FINUDA: observation of a possible [K⁻pp]bound state

A bump is observed well below the K-pp mass

- Two nucleon absorption bckgnd
 - K⁻ + (pp) → Λp q.f. peak expected at 2.34 GeV
 - K⁻ + (pp) $\rightarrow \Sigma^{0}p \rightarrow \Lambda\gamma p$ Λp lower (~74 MeV) and broadened distribution; but $\Lambda p/\Sigma^{0}p$ ~4[Katz,PRD1('70)]
- Magas et al [PRC74('06)]:

 K^- + (pp) $\rightarrow \Lambda p$ + FSI (but b.t.b. correlation much broader)

Kaon nuclear bound state formation

• K⁻ (pp) \rightarrow X \rightarrow Λ p

 $B = 115^{+6}_{-5} (stat)^{+3}_{-4} (sys) MeV$ $\Gamma = 67^{+14}_{-11} (stat)^{+2}_{-3} (sys) MeV$

Akaishi-Yamazaki:B=48MeV,Γ=61MeVShevchenko,PRL98('07):B=50-70MeV,Γ~100MeVIvanov, nucl-th/0512037:B=118 MeV,Γ~58MeV

A dependence? Formation mechanism?

The shape of the missing kinetic energy distribution is reproduced only by the ${}^{6}\text{Li}(\text{K}^{-}_{\text{stop}}, \Lambda d)$ nd reaction channel, with:

-- a spectator deuteron and

-- a **neutron** carrying away the whole **residual energy**

 $K_{stop}^{-} ^{6}Li \rightarrow \Lambda d n d_{spect}$

The shape of the missing kinetic energy distribution is reproduced only by the ${}^{6}\text{Li}(\text{K}_{\text{stop}}, \Lambda d)$ nd reaction channel, with:

-- a spectator deuteron and

-- a **neutron** carrying away the whole **residual energy**

 $K_{stop}^{-} ^{6}Li \rightarrow \Lambda d n d_{spect}$

- The shape of the missing kinetic energy distribution is reproduced only by the ⁶Li(K⁻_{stop}, Λd)nd reaction channel, with:
 - -- a spectator deuteron and
 - -- a **neutron** carrying away the whole **residual energy**

 $K_{stop}^{-} ^{6}Li \rightarrow \Lambda d n d_{spect}$

MESON2008-Krakow-6/10 June 2008 Paolo Camerini

Summary-1

- ✓ The FINUDA spectrometer at DAΦNE has collected ~1.1 fb⁻¹ of K⁻_{stop} on several nuclear targets during 2 data taking periods.
- ✓ Thanks to the performing FINUDA tracking and P.I.D and large acceptance several reaction channels were acquired and studied in coincidence.
- ✓ Data analysis of first data taking carried out successfully and first results from the analysis of second one are coming out. Selected topics were presented.
- Proton spectra from NMWD were measured for the first time down to 15 MeV, a crucial region for studying the role of FSI and 3-body decays. Comparison with theory unsatisfactory.
- ✓ Upper limit for the *Neutron Rich Hypernuclei* production established:
 - ✓ better than published for ^{12}Be
 - ✓ measured for the first time for ^{6}H and ^{7}H

Summary -2

- ✓ Study of K⁻ multi-nucleon absorption performed via A(K⁻_{stop}, Λ p/d/t)X; possible signals for [K⁻pp] and [K⁻ppn] bound clusters to be confirmed.
- ✓ **High statistics measurements** of $M_{AN/d}$, $\Theta_{AN/d}$, $p_{N/d}$, p_A distributions needed to clarify nature of signals and study A dependence, role of FSI and Fermi motion. Clear understanding of (background) multinucleon absorption processes crucial.
- ✓ Higher statistics data from 2nd run presently being analysed on ⁶Li, ⁷Li, ⁹Be, ¹³C, ¹⁶O → single tgt analysis, correlation measurements, background subtraction, neutrons
- ✓ With high(er) statistics FINUDA could study excitation spectrum of spectroscopy nucleons and invariant mass of decay products simultaneously .

THANK YOU !

Background reactions: π - spectrum

Hypernuclear Physics: FINUDA can simultaneously provide the full pattern: prompt π^- , and p and π^- from Hyp. decay and measure their spectra

E549: Λd correlation from ⁴He(K⁻_{stop}, d)

- $K^{-4}He \rightarrow \Lambda d(n)$
- detected back-to-back d p pairs with π⁻ in coincidence
- Λ discriminated from Σ⁰ (Λγ) event by missing mass
- Λ d peak at 3282 MeV/c² just below mass threshold
- interpreted as 3N absorption
 K⁻ppn (n) → Λ d (n)
- accepted d p back-to-back only, spectra are shaped by the limited phase-space
- spectra are not corrected for the apparatus acceptance

- Hunting K⁻ bound systems [K-NNN] with (semi) inclusive reactions ⁴He(K-_{stop}, N) by KEK-PS E-471
 - Peak in the recoiling nucleon momentum at ~ 500 MeV/c, observed in coincidence with a fast π^-
 - Results compatible with the predictions by Akaishi-Yamazaki
 - ⁴He(K⁻_{stop}, p): withdrawn (M.Sato, PLB 659(2008)107)
 - ${}^{4}\text{He}(K_{\text{stop}}^{-}, n)$: currently under revision

- A further observation: E930@AGS
 - ${}^{16}O(K_{in-flight}^{-}, n){}^{15}K-O$

FINUDA: Study of the ⁶Li(K⁻,p)X reaction

Study of the proton missing mass:

 Peak found at about 500 MeV/c
 Interpretation: the proton peak is simply due to two nucleon absorption reaction:

 K^{-} "d" $\rightarrow \Sigma^{-}+p$

Nothing exotic: simple reaction mechanism

Yamazaki, Akaishi, NPA 792 (2007), 229

Semi-inclusive p spectra (in coincidence with a fast π^{-})

The Σ hyperon does not come

Back-to-back angular correlation proper of a two-body reaction (isotropy expected from DBKS p

- capture rate K⁻ (np) $\rightarrow \Sigma^{-}p$:
 - 1.6%/stopped K⁻

OK!

- The p and the high momentum π^- produced in two different vertices
 - The π^{-} comes from the decay of a Σ^{-} hyperon

No need to DBKS to explain the signal: agreement with the Oset-Toki expectations

... On the skeptical side...

- Akaishi-Yamazaki use a G-matrix treatment simplifying some absorption effects, and neglecting some couplings ($\pi\Sigma$, $\pi\Lambda$)
- Different theoretical approaches:
 - General attitude (Gal, Weise, Schaffner-Bielich, Wychech)
 - K⁻ -nuclear aggregates existence is not discarded, but
 - The potential is shallow
 - The expected widths are large
 - » Possible signals only from heavy systems
 - Microscopic chiral approach
 - Ramos, Oset NPA671 (2000) 481
 - Shallow nuclear potential, weak attractive KN interaction, fastly diluted (1405)
 - Small binding energy (30-40 MeV)
 - Density dependent potential
 - Mares et al. NPA770 (2006) 84
 - Sizeable binding energy (100-200 MeV), widths > 50 MeV but only on heavy nuclei
 - 3-body Faddeev calculations
 - Shevchenko et al. PRL98 (2007), 082301
 - Small binding energy (~50 MeV) and large width (~100 MeV)
- Alternative interpretations of observed signals
 - Magas et al. PRC74 (2006), 025206
 - Oset, Toki PRC74(2006), 015207

Hypernuclear rare decay

Hypernuclear rare decay

FINUDA and $^{7}_{\Lambda}$ Li - $^{5}_{\Lambda}$ He

Production and Mesonic Decay

Progress in Particle Identification

Contamination in deuteron selection, as example

Particle Mass (MeV/c²)

Fig. 3. p_{Λ} vs p_t plots for the direct reactions (a) $K_{stop}^-A \to \Lambda(\gamma)tA'$ and (b) $K_{stop}^-A \to \Lambda tNA'$, where the notation A' represents a bound system of nucleons and N a single nucleon. The experimental data are represented by stars. In (a), the phase space distribution for the $K_{stop}^-A \to \Lambda tA'$ reaction is represented by a diffusion plot; instead, the contour plot shows the $K_{stop}^-A \to \Lambda \gamma tA'$ phase space where the $\Lambda \gamma$ pairs are the product of Σ^0 decays.

Fig. 4. Diffusion plots of p_{Λ} vs p_t for the multistep reactions (a) an on-shell pion is produced in the final state $K_{stop}^-A \rightarrow \Lambda t \pi A'$ and (b) a pick-up reaction $NA' \rightarrow t[A'-2]$ produces the final triton in $K_{stop}^-A \rightarrow \Lambda t[A'-2]$, where the notation [A'-2] represents a bound system of nucleons and N a single nucleon. The experimental data are represented by stars.