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f0(980) and a0(980)  -> KK         991
f2(1565)  -> ωω 1566
X(3872)  -> D(1865)D*(2007)   3872
Y(4660)  -> ψ’(3686)f0(980)      4666 
Λc(2940) -> D*(2007)N             2945
P11(1710), P13(1720) ->ωN 1720
K0(1430) -> Kη’ ?                     1453
K1(1420) -> KK*                       1388 

Examples                   (MeV)



Simple explanation:

D(s)= M2 - s - Σi Πi(s)

Im Πi = gi
2 ρi(s)FFi (s)

Re Πi = 1 P    ds’ Im Πi(s’)
π (s’ – s)

thri

phase space

(Im Πi arises from the pole at s = 
s’);

At threshold, Re Π is positive 
definite.

Form factor needed to make integral 
converge.



f0(980) -> KK as an 
example

FF = exp(-3k2)

(R=0.8 fm)

Zero-point energy also helps attract 
the



Illustration with f0(980) 
parameters



Incidentally, the dispersive term Re Π is 

equivalent to the loop diagram for producing 

the open channel:
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A bit more algebra:

Re D(s) = M2 – s + g2 j

Above threshold, π j=-2ρ2 + . . . ,   ρ=2k/s1/2

Below, π j=π[(4m2K-s)/s]1/2 - 2v2 +. .  .v=2|k|/s1/2

=π[(4m2K-s)/s]1/2 –2(4m2K-s)/s + . 

. .

(Flatte term)

i.e. the cusp contributes like a resonant term 
with 

respect to the KK threshold; g2K and M(res) are 
very

l l d l h



Is f0(980) actually resonant? Answer: Yes, 
but

interference information is needed for the 
phase

pp->3π0

at rest

Likewise pp -> ηπ0π0 data require resonant

phase variation for a0(980)



Tornqvist gives a formula for the KK components:

Ψ= |qqqq> + [(d/ds) Re Π(s)]1/2 |KK>

1 + (d/ds) Re 
Π(s)

For f0(980), KK intensity > 60%

For a0(980),                    > 35%.

Note that f0(980) has g
2
ππ = 165 MeV, g2KK= 695 MeV

and a0(980) has g
2

ηπ=221 MeV, g
2
KK=256. Form factors

are required to cut off their high mass tails.  



What are σ, κ, a0(980) and f0(980)?

(i)Leutwyler et al fit ππ elastic scattering 
and find the

σ pole using the Roy equations; these have 
left-hand

cuts which account for meson exchanges, mostly 
ρ.

Moussallam et al fit Kπ elastic scattering 

likewise and

determine the κ pole. The success of the 
calculations

suggests σ and κ are due to meson exchanges.



Rupp, van Beveren and I  have modelled all 4
states with a short-range confining potential
coupled at r~0.65 fm to outgoing waves. 
Adler zeros are included in all cases. This
successfully fits data for all four states with a
universal coupling constant, except for SU3
coefficients, confirming they make a nonet.
[Phys.Lett. 92 (2006) 265]



An interesting point emerges from this model. 
The

a0(980) is not attracted to the ηπ threshold 
because of

the nearby Adler zero at s = m2η – m2π/2; the 
Adler

zero in KK is at s = m2K/2, far removed from the 
KK

threshold, so there is no inhibition of the 
attraction to

the KK threshold.

BUT of course meson exchanges do not account for

all states, e.g. the ρ(770).



In the Mandelstam diagram, there are:

s-channel 
resonances
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t-channel

u-channel

To state the 
obvious,

all three 
contribute to

resonance 
formation 

i.e. the quark model is modified by decay 
channels.

[NN i l i d b h ]



Oset, Oller et al find they can generate many states
from meson exchanges (including Adler zeros).
Hamilton and Donnachie found in 1965 that meson
exchanges have the right signs to generate P33, D13,
D15 and F15 baryons. Suppose contributions to the
Hamiltionian are H11 and H22; the eigenvalue equation
is 

H11     V   Ψ  =  E Ψ

V     H22

The Variational Principle ensures the minimum E is the
Eigenstate. Most non qq states are pushed up and
become too broad to observe.  There is an analogy 
to the covalent bond in chemistry



The X(3872) cannot be fitted as a pure cusp – it 
is too

broad. It can be fitted either as a resonance 
(Braaten

et al) or as a virtual state (Hanhart et al). With 
my

formula including the threshold cusp, I can fit it 
either

way. It could be a regular cc state captured by 
the D D*

threshold. [It is important to find the quantum 
numbers

of the X(3942) reported by Belle in D D* If it



J/ψ
ρ

D D*

Pure  cusp too wide

X(3872)



f2(1565) in ππ, ωω and ρρ

Intensity

ρρ

ωω

ππ

Re Π

Cusp due to ππ−>ωω via ρ exchange and ρρ−>ωω via

π exchange. Data on ππ−>4π badly needed!



Other examples

1) η(1405) and η(1475) are probably the same 
object.

The latter is almost purely KK*(890), with L=1 
decays,

hence phase space rising as k3 from threshold, 
1392

MeV. This phase space forces the KK* peak up in 
mass

by ~50 MeV. BES I fitted both with a single 
η(1425).

BES II data needed.



Z(4430) -> ψ’π+ at D*(2010)D1(2420) 
threshold

Many de-excitations modes, e.g. DD* or D*D*

Is it a resonance or just a threshold cusp?

Fit with D(s) = M2 – Re Π(s) – ig2 ρ(D*D1)



The π1 (1600) looks a reasonable candidate for an

exotic JPC = 1-+ hybrid.

There is also a claim for a π1(1405). It may be 

just a

threshold cusp due to the thresholds b1(1235)π
and

f1(1235)π. Needs fitting to this possibility. 

-------------

The di-baryons of the 1980s are threshold cusps,

e.g. in NΔ and K+Δ.    



News on a0(1450) 
(preliminary)

I have just finished refitting pp −> ηπ0π0 at rest 
using the

full dispersive forms for its decays to ρω and 
a0(980)σ.

The fit to a0(1450) improves substantially, the 
fitted

signal increases (due to better line-shape) and 
becomes

much more stable. Central mass -> 1446 +- 8(stat) 
+-

16(syst) MeV for both ηππ and ρωπ0 ; KKπ remains to 

be



Conclusions

1)Dispersive effects due to rapidly opening 
thresholds

are important in the mass range 1-1.7 GeV.

2) At sharp thresholds, the cusp in the real part 
of the

amplitude can attract resonances over a mass range 

of at least 100 MeV. Zero point energy also helps 
to

stabilise resonances at thresholds.

3) More work is needed allowing for these 
dispersive


