

10th International Workshop on Meson Production, Properties and Interaction KRAKÓW, POLAND 6 - 10 June 2008

Meson spectroscopy at CLAS Present and future

M.Battaglieri

for the CLAS Collaboration Istituto Nazionale di Fisica Nucleare Genova - Italy

MESON08

1)

Meson spectroscopy at CLAS

Why hadron spectroscopy?

* Quantitative understanding of quark and gluon confinement
 * Reaveling the nature of the mass of the hadrons

- ***** See the QCD degrees of freedom at work
- * Validate lattice-QCD predictions

The tool: electromagnetic interaction

- weaker than strong interactions
- therefore calculable perturbatively
- based on the well-known QED

The scattering is normally analyzed in term of the <u>One-Photon-Exchange</u> approximation (OPE)

 $-q^m q_m = Q^2 = photon virtuality$ s = CM total energyt = momentum transfer

- Indirect coupling to initial particle
- Access to gluonic degrees of freedom
- Access to strong interaction dynamics

MESON08

Meson spectroscopy at CLAS

M.Battaglieri INFN-GE

Physics goal

How QCD-partons manifest themself in strong interactions in non-perturbative regime

Dynamic properties of constituent partons

- Vector meson photoproduction at large -t
- Vector meson electroproduction at large Q²

Exclusive electro- and photo- scattering in a wide kinematic range

Beyond the standard quark model

- Pentaquark searches
- Light meson spectroscopy and PWA with CLAS

4)

High statistics, high resolution low energy exclusive measurement

Meson spectroscopy with real photon at JLab-12GeV

The physics program driving the JLab upgrade at 12 GeV

Jefferson Lab

MESON08

5)

Meson spectroscopy at CLAS

The CEBAF Large Acceptance Spectrometer CLAS

Performance

- **★** L = 10³⁴ cm⁻² s⁻¹
- <mark>☆</mark>∫ B dI = 2.5 T m
- **☆** ∆p/p ~ 0.5-1 %
- $\star \sim 4\pi$ acceptance
- ★ Best suited for multiparticle final states
- \star Bremsstrahlung Photon Tagger ($\Delta E_{\gamma}/E_{\gamma} \sim 10^{-3}$)

MESON08

6)

Meson spectroscopy at CLAS

The Jefferson Lab and the CLAS detector Hadron detection efficiency and kinematic coverage

Vector dominance hypothesis Hadronic scattering ⇔ photoproduction

$$\sigma_{\rm tot} = A \, {\rm s}^{-0.4525} + B \, {\rm s}^{0.0808}$$

 Simple interpretation in Regge Theory:

Pomeron exchange + reggeon exchange

forward: *t-channel* exch.
backward: *u-channel* exch.

Meson spectroscopy at CLAS

Differential x-section at large -t

MESON08

Meson spectroscopy at CLAS

Sensitivity to a possible q-diqark structure (φ photoproduction)

Sensitivity to exchanged quanta structure (ρ and ω photoproduction)

10)

Mes

Meson spectroscopy at CLAS

VM photoproduction

F.Cano and J.-M. Laget Phys.Rev. D65 074022 (2002)

A coherent picture of vector mesons photoproduction

MESON08

Meson spectroscopy at CLAS

Rho electroproduction

C. Hadjidakis. et al. Phys.Lett.B605:256-264,2005

MESON08

Results:

 The Transverse cross section is reproduced by the Regge based model (+Q² monopole form factor)

(J.M.Laget F.Cano)

 The Longitudinal cross section is reproduced by a GPD based model

(Vanderhaeghen, Guichon, Guidal)

New data are currently under analysis

Phi electroproduction

J.Santoro. et al. nucl.ex:0803.3537

MESON08

13)

Omega electroproduction (High -t,W,Q²)

Meson spectroscopy at CLAS

M.Battaglieri INFN-GE

14)

MESON08

The space time structure of hard scattering process

Non perturbative partonic regime

Effective partonic degree of freedom

Regge quanta exchange in terms of QCD fields

pomeron exchange ⇔ 2-gluon exchange reggeon exchange ⇔ quark exchange

- Dressed gluon and constituent quark propagators: from Lattice
- GPD-based interpretation is still in progress

The pentaquark

- First clear evidence of exotic configurations (light and narrow)
- New kind of particle will influence our understanding of baryons structure
- 5-quark states are predicted in many theoretical models

 Many experiments with different probes and targets in many different labs aimed to reproduce the initial finding

LEPS @ Spring-8 (Osaka)

T. Nakano et al. Phys. Rev. Lett. 91 012002, 2003

The pentaquark JLab experiments

 New high statistics, high precision, photoproduction experiment on both proton and deuteron target

Results for reactions

- $\gamma p \rightarrow \Theta^{+} K^{0}$ ($\Theta^{+} \rightarrow nK^{+} and \Theta^{+} \rightarrow pK^{0}$)
- $\gamma \mathbf{n} \rightarrow \Theta^{+} \mathbf{K}^{-}$

show no indication of a narrow resonance

• An upper limit of 0.75nb (3.0nb) was set for Θ^+ production on proton (neutron)

JLab showed its discovery potential!

MESON08

19)

Meson spectroscopy at CLAS

Meson spectroscopy with photons at JLab Indications from Lattice-QCD simulations

1) Linear potential between quarks is behind the confinement

2) Self-interacting gluons forms a string-like flux tube

How do we look for gluonic degrees of freedom in the real world?

MESON08

Meson spectroscopy at CLAS

M.Battaglieri INFN-GE

Meson spectroscopy with photons at JLab

Meson map

Hybrid mesons and glueballs mass range:

1.4 GeV - 3.0 GeV (5 GeV < E_{γ} <12 GeV)

Lattice-QCD predictions for the lowest hybrid states 0⁺⁺ 1.6 GeV

0⁺⁺ 1.6 GeV 1⁻⁺ 1.9 GeV

MESON08

Meson spectroscopy at CLAS

Meson spectroscopy with photons at JLab

* Search for mesons with 'exotic' quantum numbers (not compatible with quark-model)

Not-allowed: $J^{PC} = 0^{-1}, 0^{+1}, 1^{-1}, 2^{+1} \dots$

Unambiguous experimental signature for the presence of gluonic degrees of freedom in the spectrum of mesonic states

S,

S₁

Meson spectroscopy with photons at JLab Why photoproduction?

***** Photoproduction: exotic J^{PC} are more likely produced by S=1 probe

★ Production rate for exotics is expected comparable as for regular mesons

Few data (so far) but expected similar production rate as regular mesons

Partial Wave Analysis

24)

compare with models

3) Derive partial wave cross sections to

Dispersion Relations

~~~~~

**M.Battaglieri INFN-GE** 

~~~~

Coherent meson production on nuclei

* Eliminate s-channel resonance background

* Simplify PWA: S=I=0 target acts as spin and parity filter for final state mesons

★ Production cross section expected ~ $e^{-bt} |A F_A(t)|^2 \rightarrow low -t kinematic$

Detection of recoiling nucleus:Photon beam:quasi-real- low -t (p~0.2-0.5 GeV)- small size- small size- thin (gas) target (~10⁻³ g/cm²)- high fluxPhotoproductionMeson spectroscopy on ⁴He1500

$$\gamma^{4}$$
He \rightarrow^{4} He $\pi^{0}\eta$ γ^{4} He \rightarrow^{4} He $\pi^{0}\eta'$

***** Strongest evidence of $J^{PC}=1^{-}\pi_{1}(1400)$ exotic meson $\pi^{-}p \rightarrow n\eta\pi^{0}$ in E852-Brookhaven

★ Search for a resonance in P-wave in π^0 η and π^0 η'

***** Known (non-exotic) resonances can be used as a benchmark (e.g. $J^{PC}=2^{++}a_2(1232)$)

Meson spectroscopy with photons at JLab-12GeV

- * The photon beam
 - With a 12 GeV electron beam only few choices:
 - 1) Bremsstrahlung
 - 2) Quasi-real electro-production

 Tagger (initial photon energy) is required to add 'production' information to decay

• Linear polarization is useful to simplify the PWA and essential to isolate the nature of the t-channel exchange

★ Essential to isolate production mechanisms (M)

* Polarization acts as a J^{PC} filter if M is known

* Linear polarization separates natural and unnatural parity exchange

Hall-D and Hall-B will host real photon beam!

Quasi-real electroproduction at very Low Q² Hall-B

| $E_{scattered}$ | 1 - 4 GeV |
|-----------------|-------------------------------|
| θ | $0.5^{o} - 1.2^{o}$ |
| ϕ | 0° - 360° |
| ν | 7 - 10 GeV |
| Q^2 | $0.003 - 0.029 \text{ GeV}^2$ |
| W | 3.9 - 4.6 GeV |
| x_{Bj} | 0.0001 - 0.002 |

Performance

- \star 7 < E_{γ} < 10 GeV
- ★ 5cm LH target \rightarrow L ~10³⁴ cm⁻²s⁻¹
- ★ Linear polarization ~ 65% 20% (individual)
- * Capability of forward tagging (electron detection)

MESON08

Meson spectroscopy at CLAS

Real and quasi-real photon beams at JLab-12GeV

Meson spectroscopy with photons at JLab-12GeV

***** The Detector

- Determination of J^{PC} of meson states requires Partial Wave Analysis
- Decay and Production of exclusive reactions
- Good acceptance, energy resolution, particle Id

Hermetic charged/neutral particles detector

Hall-B - CLAS12 Detector

MESON08

29)

Meson spectroscopy at CLAS

Conclusions

New precise and abundant data from CLAS@Jefferson Lab

Exclusive reactions reveal hadron complexity beyond quark model

- **Dynamic properties of constituent partons** Interacting partons in meson photoproduction
 - Production mechanisms help to understand confinement
- **Beyond the standard quark model** Search for exotic configurations (pentaquarks, S=+1)
 - New high statistics, high precision, low energy measurement show no indication of a narrow resonance setting an upper limit for Θ^+ production
- Meson spectrum investigated in photoproduction
 - PWA (IM and Moments + Dispersion relations) feasible in CLAS

* Better understanding of hadrons structure and nuclear dynamics
 * Progress in understanding confinement in QCD and the role of constituent quark and gluons to describe the non-perturbative regime

Near future:

Dedicated detectors and high intensity photon beams at Jlab-12 will make JLab-12 the ideal facility to study hadron spectroscopy

MESON08