Dynamical calculations of \bar{K} and multi– \bar{K} nuclei

<u>D. Gazda</u>^(a), E. Friedman^(b), A. Gal^(b), J. Mareš^(a),

^(a) Nuclear Physics Institute, 25068 Řež, Czech Republic ^(b) Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel

In the present contribution we report on recent dynamical calculations of \bar{K} and multi- \bar{K} nuclei across the periodic table [1,2,3]. A wide range of binding energies was spanned by varying the \bar{K} couplings to the meson fields. The K^- absorption was taken into account within the optical model phenomenology constrained by global fits to kaonic atom data. We analyzed in detail processes and conditions, which determine the K^- decay width in the nuclear medium. Calculations of nuclear systems with several \bar{K} mesons revealed that the resulting \bar{K} separation energy, as well as the associated nuclear and \bar{K} densities, saturate with the number of \bar{K} mesons embedded in the nuclear medium. Finally, we explored properties of possibly self-bound strange systems made out of neutrons and \bar{K}^0 mesons, or protons and K^- mesons.

- [1] J. Mareš, E. Friedman, A. Gal, Nucl. Phys. A 770, 84 (2006).
- [2] D. Gazda, E. Friedman, A. Gal, J. Mareš, Phys. Rev. C 76, 055204 (2007); erratum ibid. C 77 019904 (2008).
- [3] D. Gazda, E. Friedman, A. Gal, J. Mareš, arXiv:0801.3335[nucl-th]; Phys. Rev. C in press.

E-mail: gazda@ujf.cas.cz