

New resonance X(1835) and Enhanced structures at BESII

Changchun Zhang BES Collaboration IHEP, Beijing zhangcc@mail.ihep.ac.cn

J / ψ radiative decays

J/ψ hadronic

decays

Introduction

Strong enhancement in $J/\psi \rightarrow \gamma p \overline{p}$ New resonance X(1835) in $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$ Enhanced structure in $J/\psi \rightarrow \gamma \omega \phi$ New observation of broad 1⁻⁻ resonance in $J/\psi \rightarrow K^+ K^- \pi^0$ Other structures in $J/\psi \rightarrow pK^-\Lambda$ **σ** meson from $J/\psi \to \omega \pi^+ \pi^-$ **K** meson from $J/\psi \to \overline{K}^*(892)^0 K^+ \pi^-$ Summary

The Beijing Electron Positron Collider (BEPC)

A unique e⁺e⁻ machine operating in 2-5 GeV since 1989

- ***** Single bunch, E_{cm} ~2-5 GeV,L ~ 1x10³¹/cm²·s at 3.68 GeV
- * 5-6 months/year for HEP
- * 140mA @ 2.2 GeV, 3 month/year for synchrotron radiation run

BESII Detector

13 June 2006

Changchun Zhang Meson2006 Krakow Poland

Introduction

Established picture by QCD and Quark model

- Strong interaction among quarks mediated by gluon
- Color confinement : hadrons as color singlets
- > Hadrons consist of constituent quarks : $q\overline{q}$ or qqq

Most hadrons are consistent with predicted spectroscopy

$n^{2s+1}\ell_J$	JPG	I = 1 $vd, \overline{v}d, \frac{1}{\sqrt{2}}(d\overline{d} - v\overline{v})$	$I = \frac{1}{2}$ w7, d7; d6, - U6	= 0 f	= 0 f	$q\overline{q}$ assignments (PDG)						
$1^{1}S_{0}$	0-+	r	ĸ	n	η'(968)							
1 * 51	1	p(770)	K*(892)	¢(1920)	ω(782)	Light	t meso	ns	Hea	avy me	son	S
1 ¹ P ₁	1+-	ð1(1235)	K _{1R} †	λ ₁ (1380)	- 3441.4 xP/2		1-0	1-1-1				
1 ⁸ Po	0++	a ₀ (1450)	$K_0^*(1430)$	f ₀ (1710)	#	50	50 50	तार, तर्वे; त्रथ, तर्व	n≥; 8s	bu, bd; bu, bd	b2; δ.e	bπ; δc
1 ⁸ P ₁	1++	a ₁ (1260)	K_{1A}^{\dagger}	$f_1(1420)$	1'So 0^+	n_(1.5)	na(15)	D	D_s^{\pm}	В	Be	B_i^{\pm}
1 ³ P ₂	2++	a ₂ (1320)	$K_{2}^{*}(1430)$	$f_2^i(1525)$	1*51 1	J/\$(15)	T(15)	D*	$D_{4}^{*\pm}$	B*	$B_{\delta}^{*\pm}$	
1 ¹ D ₂	2-+	x ₂ (1670)	$K_{2}(1770)^{\dagger}$	$\eta_2(1870)$	1 1 21 1+-	h _c (1P)		D1(2420)	De1(2536)±			
1 ⁵ D ₁	1	p(1700)	K*(1680) [‡]		1*Ba 0++	Xa(1P)	Yac(1P)		D* (2317)±1			
1 ⁵ D ₂	2		$K_2(1829)^{\ddagger}$		150. 1++	Ya(1P)	Yu(1P)		D* (2480)11		-	
1 ⁵ D ₈	3	p2(1690)	$K_3^*(1780)$	φa(1850)	138. 0++	x_(1B)	Antes /	71 (2400)	Dt (arm)t			
1 ⁸ F ₆	4++	a4(2040)	$K_4^*(2045)$			Xa(IP)	242(17)	122(2000)	D ₁₂ (aura)-			
1 ⁸ <i>G</i> ₈	5	ρ ₅ (2350)			1+01 1	\$(3770)						
1 ³ H ₆	6++	a ₆ (2450)			2'50 0-+	η _c (25)						
2 1S_0	0-+	x (1300)	K(1460)	ŋ(1475)	2351 1	\$\psi(25)	T(25)					
2 ⁵ S ₁	1	p(1450)	K*(1410) [‡]	¢(1680)	2 ⁸ P _{0,1,2} 0 ⁺⁺ , 1 ⁺⁺ , z ⁺⁺		X20,1,2 (2 P)					

Changchun Zhang

ng Meson2006 Krakow Poland

Lightest hybrid (1⁻⁺) is 1.9 GeV by LQCD but
 1.4 GeV by Bag model

- \diamond as well as for exotics
 - Molecule of meson-meson and baryon-baryon
 - including h-h bound state

Changchun Zhang Meson2006 Krakow Poland

Strong enhancement in $J/\psi \rightarrow \gamma p \overline{p}$

Fits to P-wave BW and known resonances

- S-wave pp̄ with even C parity : 0⁻⁺ pseudoscalar
 Fit with P-wave BW function (0⁺⁺) but without FSI : χ²/dof=59/56
 Both scalar and pseudoscalar have
- same photon angular distribution of $1 + \cos^2 \theta$.

Two known spin-zero resonances can be ruled out. $J^{PC} = 0^{-+} \frac{\eta(1760)}{\pi(1800)} : \chi^2/\text{dof} = 323/58$ χ^2/dof is even worse

13 June 2006

Changchun Zhang Meson2006 Krakow Poland

Strong enhancement in $J/\psi \rightarrow \gamma p \overline{p}$

X(1860) strongly coupled to $p\overline{p}$

BES measured:

 $Br(J/\psi \to \gamma X(1860)) \cdot Br(X(1860) \to p\overline{p}) = (7.0 \pm 0.4^{+1.9}_{-0.8}) \times 10^{-5}$

From Crystal Ball result, we estimate:

 $Br(J/\psi \rightarrow \gamma X(1860)) < 2 \times 10^{-3}$

We would have:

 $Br(X(1860) \rightarrow p\overline{p}) > 4\%$

It indicates that X(1860) has large coupling to *pp*Interesting that it is observed in J/ψ radiative decay

 Broad pp structure in B decay is attributed to quark fragmentation effect.

FIG. 7: Invariant mass of $p\bar{p}$ from $\Upsilon(1S) \rightarrow \gamma p\bar{p}$.

Changchun Zhang Meson2006 Krakow Poland

- deuteron is a molecule of proton-neutron
- $\succ p\overline{p}$ can be weakly bound as baryonium

Observation of New X(1835) in $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$

where $\eta' \rightarrow \pi^+ \pi^- \eta \rightarrow \pi^+ \pi^- \gamma \gamma$ and $\eta' \rightarrow \gamma \rho \rightarrow \gamma \pi^+ \pi^-$

Baryonium interpretation of pp̄ structure requires
a new resonance around 1.86 GeV, and
observation via other decay mode
containing gluon component or η' in final state

New resonance X(1835)

Event selection

Charged track with good helix fit
C.L. for π/K/p hypothesis
TOF and dE/dx combined
at least three pions identified
4-c kinematic fit
χ²(ππππγγγ) < 8

 $\lambda^{2}(\pi\pi\pi\pi\gamma\gamma\gamma) < \zeta^{2}(KK\pi\pi\gamma\gamma\gamma)$

*η mass cut
 *5-c kinematic fit with η mass constrained
 > to improve M_{π⁺π⁻η} resolution

Changchun Zhang Me

Changchun Zhang

Zhang Meson2006 Krakow Poland

New resonance X(1835)

Fitting to $\pi^+\pi^-\eta'$ mass spectrum

The $\pi^+\pi^-\eta'$ mass spectrum for η' decaying into $\eta' \rightarrow \pi^+\pi^-\eta$ and $\eta' \rightarrow \gamma\rho$ $N_{obs} = 264 \pm 54$ $M = 1833.7 \pm 6.1 \pm 2.7 MeV$

$$\Gamma = 67.7 \pm 20.3 \pm 7.7 MeV$$

 $B(J/\psi \to \gamma X)B(X \to \pi^+\pi^-\eta') = (2.2 \pm 0.4 \pm 0.4) \times 10^{-4}$

BES Collab., Phys. Rev. Lett., 95, 262001 (2005)

c.f.: $B(J/\psi \to \gamma X)B(X \to p\overline{p}) = (7.0 \pm 0.4^{+1.9}_{-0.8}) \times 10^{-5}$

X(1835) and X(1860) could be same state

S-wave BW fit to $p\overline{p}$ mass spectrum is modified to include

- > effect of FSI (zero Isospin S-wave)
- > yields $M = 1830.6 \pm 6.7 \text{ MeV/c}^2$, $\Gamma < 153 \text{ MeV/c}^2$ (90% C.L.)
- * $\pi^+\pi^-\eta'$ is a favored decay mode for $p\overline{p}$ bound state according to "G.J. Ding and M.L. Yan, Phys. Rev. C 72, 015208 (2005)".
- * Both favor 0^{-+} , but needs to be measured as an important test.
- * Other interpretations of X(1835) are not excluded.

Changchun Zhang Meson2006 Krakow Poland²¹

No enhanced structure near $\phi \omega$ threshold from sideband

- Fits with S, P, D-waves for γX and $\omega \phi$ systems are studied.
- The enhancement X(1810) favors 0^{++} and S-wave for $\omega \phi$
- Its mass and width does not fit to any known scalars in PDG.

BES Collab., Phys.Rev.Lett.96:162002,2006.

13 June 2006

Enhanced structures in J/ψ hadronic decays

Changchun Zhang Meson2006 Krakow Poland²⁵

Broad structure in $J/\psi \to K^+ K^- \pi^0$

New observation of a broad 1⁻⁻ resonant structure of K^+K^- near 1.5 GeV/c²

Preliminary

Changchun Zhang Meson2006 Krakow Poland²⁶

Changchun Zhang Meson2006 Krakow Poland

Broad structure in $J/\psi \to K^+ K^- \pi^0$

Observed invariant mass of K⁺K⁻ system from $K^+K^-\pi^0$ final states

Background study
π⁰ sideband (2%)
dominant (6%) from ρπ

Negligible from $J/\psi \to \omega \pi^+ \pi^-$ and $J/\psi \to \gamma \eta_C \to \gamma K^+ K^- \pi^0$

13 June 2006

Changchun Zhang Meson2006 Krakow Poland

Changchun Zhang Meson2006 Krakow Poland

Angular distributions for events with $M_{\kappa^+\kappa^-} < 1.7 \, GeV/c^2$ from PWA fit

Successful fit seen in angular distributions: (a),(c),(e) are polar angles in lab. reference frame (b),(d),(f) are polar angles in CM frames of $K^{\pm}\pi^{0}$ and K^+K^- respectively.

Meson2006 Krakow Poland Changchun Zhang

Significance study of X resonance

Preliminary

31

States included in PWA fit	Difference in	comment	
	Log-likelihood		
$X + K^{*}(890) + K^{*}(1410) + \rho(1700) + PS$	0	Best fit	
$K^{*}(890) + K^{*}(1410) + \rho(1700) + PS$	533		
$X + \sum K^*(1410) + \rho(1700) + PS$	11438	Remove one	
$X + K^*(890) + \rho(1700) + PS$	465	of states used	
$X + K^*(890) + K^*(1410) + PS$	28	in best in	
$X + K^{*}(890) + K^{*}(1410) + \rho(1700)$	138		
$\rho(770) + \rho(1900) + \rho(2150) + (K^*(890) + K^*(1410))$	85	Known states	
$\rho(1450) + (+ \rho(1700) + PS)$	36		

♦ $\rho(1450)$ can be ruled out also due to its small branching fraction $Br(\rho(1450) \rightarrow K^+K^-) < 1.6 \times 10^{-3} (95\% C.L.)$

Broad structure in $J/\psi \to K^+ K^- \pi^0$

Systematic errors

Preliminary

Uncertainty from inclusion of other possible states

Sources	ΔS	$\Delta M(MeV)(pole)$	$\Delta\Gamma$ (MeV)(pole)	B.R. (%)
adding $K^*(1680)$	-14	52.4	9.2	-2.1
adding $K^{\star}(2075)$	-1.6	-26.6	-52.2	0.9
adding $K_{2}^{\star}(1430)$	-0.1	-8	-17.6	-1.4
adding $\rho(1900)$	-0.1	-7	40.4	2.8
adding $\rho(2150)$	-2.3	51.4	9.4	26.8
adding $\rho(770)$	-13	-58	-111.6	-29.9
Total		$^{+73.4}_{-64.7}$	$^{+42.5}_{-124.5}$	$^{+27.0}_{-30.0}$

Dominant uncertainty from inclusion of other possible states

- ★ Here, possible K*(2075) found in $J/\psi \rightarrow pK\overline{\Lambda}$ by BES
- * Uncertainties in parameters of known resonances, MDC wire resolution, PID and total number of J/ψ events are considered.

- ♦ PWA fit with X, $\rho(1700)$, $K^*(890)$, $K^*(1410)$ and nonresonant (PS) gives :
- > $J^{PC} = 1^{--}$ (3^{--} is ruled out by worse likelihood)
- > The pole position for X : $(1576^{+49+98}_{-55-91}) i(409^{+11+32}_{-12-67}) MeV/c^2$
- $Pr(J/\psi \to X\pi^0) \cdot Br(X \to K^+K^-) = (8.5 \pm 0.6^{+2.7}_{-3.6}) \times 10^{-4}$
- \succ big destructive interference among X, $\rho(1700)$ and PS
- Broad 1⁻⁻ structure is not compatible with any known mesons

Observations of $p\overline{\Lambda}$ and $K^{-}\overline{\Lambda}$ **threshold enhancement in** $J/\psi \to pK^{-}\overline{\Lambda}$

Enhanced structures in $J/\psi \to pK^-\overline{\Lambda}$

Discussions

- It can also be fit with P-wave BW resonance.
- ♦ PWA with interference between N^* and Λ^* show :
 - \geq large Br of J/ ψ decays to N^* and Λ^* are required.
- Theoretical calculations for FSI are needed.
- Unlikely as conventional K*
 - ≻ No evidence for X(2075) from J/ ψ → K⁺K⁻π⁰
 - Search for its $K\pi$, $K\pi\pi$ decay modes would help to understand its nature.

Changchun Zhang

38

Meson2006 Krakow Poland

- ★ Preliminary PWA with various combinations of possible N^{*} and Λ^* in the fits. The structure N^*_X has :
 - > Mass 1500~1650MeV \square $N_X^*(1610)$
 - ➢ Width 70∼110MeV
 - \succ J^P favors $\frac{1}{2}$
- ★ It has large $B(J/\psi \to pN_X^*) \cdot B(N_X^* \to K^-\overline{\Lambda}) \approx 2 \times 10^{-4}$, suggesting N_X^{*} has strong coupling to KA.

Changchun Zhang Meson2006 Krakow Poland

- Light scalar meson spectrum is important to understand PQCD.
- * σ and κ (or $K_0^*(800)$), together with $f_0(980)$ and $a_0(980)$, are possible cadidates as four-quark states.
- Long-standing puzzle on the existence of κ .
- Determination of σ, κ provides information to understand chiral symmetry in QCD.
- Note that σ , κ are close to their threshold.

> spin-parity $J^{PC} = 0^{++}$

> Averaged pole : $(541 \pm 39) - i(252 \pm 42)$ MeV

13 June 2006

Changchun Zhang Meson2006 Krakow Poland

♦ PWA for K*(892)⁰K⁻π⁺ in J/ψ→K⁺K⁻π⁺π⁻ is performed
Averaged mass and width of κ from two methods $M = (878 \pm 23^{+64}_{-55}) MeV/c , \Gamma = (499 \pm 52^{+55}_{-87}) MeV/c$

corresponding to a pole at $(841 \pm 30^{+81}_{-73}) - i(309 \pm 45^{+48}_{-72}) MeV/c$

BES Collab., Phys. Lett. B633, 681 (2006)

> X(1810) favors 0^{++} and S-wave for $\omega\phi$ system

* J/ ψ decays is an ideal hunting ground to search for exotics.

To understand those states, more works in both experiments and theoretical calculations are needed.

Thanks

* Low-mass $p\overline{p}$ pairs produced vi radiative decays from 58 million J/ ψ events

Strong enhancement in $J/\psi \rightarrow \gamma p \overline{p}$

◆ Event selection
> Charged track with good helix fit
> K/p separation : dE/dx
K contamination < 1%/track
> 4-c kinematic fit
C.L._{µpp} > 0.05, C.L_{µpp} > C.L_{µK+K}> Highest C.L. taken if more than one photon in event

Changchun Zhang Meson2006 Krakow Poland

Background • Dominant background from $J/\psi \rightarrow \pi^0 p \overline{p}$ \succ with $\pi^0 \rightarrow \gamma \gamma$ decay and one missing photon data Events/0.005 GeV/c² $J/\psi \rightarrow \pi^0 p \overline{p}$ events survived from $J/\psi \rightarrow \gamma p \overline{p}$ selection 20 Events/0.005 GeV/c² MCNo enhancement 25 near threshold 0.00 0.10 0.20 0.30 $M_{n\bar{n}} - 2m_n (GeV/c^2)$

Strong enhancement in $J/\psi \rightarrow \gamma p \overline{p}$

13 June 2006

Changchun Zhang Meson2006 Krakow Poland

Crystal Ball results on inclusive photon spectrum of J/ψ decays

13 June 2006

Changchun Zhang Meson2006 Krakow Poland

ppbar bound state in NNbar potential

• Paris NNbar potential: (Paris 93, B. Loiseau et al., hep-ph/0411218, 0501112)

– For ${}^{11}S_0$, there is a bound state:

E = - 4.8 - i 26.3 MeV

quite close to the BES observation.

- However, Julich NNbar model:(A. Sibirtsev et al., hep-ph/0411386)
 - For ¹¹S₀: E = -104 i 413 MeV

seems quite far away from BES observation.

They both predict an ${}^{11}S_0$ ppbar bound state, although they are quantitatively different.

Discussion on I=1 S-wave FSI

Changchun Zhang

Meson2006 Krakow Poland

- Most I = 0 states have been observed in J/ ψ radiative decays with big production rate (especially for 0⁻⁺ mesons) such as η , η ', η (1440), η (1760), f₂(1270), f₂(1525), f₀(1500), f₀(1710).
- The only observed I=1 meson in J/ ψ radiative decays is π^0 with low production rate 4*10⁻⁵, e.g., no evidence for $\pi(1800)$ in J/ $\psi \rightarrow \gamma 3 \pi$ process.
- It is unlikely to be from $\pi(1800)$.
- I=1 S-wave FSI seems unlikely.

Signature of a pp_bar Bound State

- η'ππ mode is expected to be the a favorable decay mode for a ppbar bound state below ppbar mass threshold (G.J. Ding and M.L. Yan, hep-ph/0502127).
 - There are gluon contents in proton and anti-proton.
 - $-\eta$ ' has strong coupling to gluons.

NO strong dynamical threshold enhancement in $p\overline{p}$ cross sections (at LEAR)

Discussion

Theoretical works and recent reviews on $p\overline{p}$ bound state (baryonium)

Earlier models

- > E. Fermi, C.N. Yang, Phys. Rev. 76, 1739 (1949)
- > Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961).

Later models

- > I.S. Sharpiro, Phys. Rept. 35, 129 (1978)
- C.B. Dover, M. Goldhaber, PRD 15, 1997 (1977)
- A. Datta, P.J. O'Donnell, PLB 567, 273 (2003)
- M.L. Yan et al., hep-ph/0405087
- B. Loiseau et al., hep-ph/0411218

Recent reviews

- > E. Klempt et al., Phys. Rep. 368, 119 (2002)
- > J.M. Richard, Nucl. Phys. B (proc. Suppl.) 86, 361 (2000).

Comparison of two decay modes

- ★ Mass and width from $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta' (\eta' \rightarrow \pi^+ \pi^- \eta)$ m=1827.4±8.1MeV/c², Γ =54.2±34.5MeV/c²
- ★ Mass and width from $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta' (\eta' \rightarrow \gamma \rho)$ m=1836.3±7.9MeV/c², Γ =70.3±23.1MeV/c²

$$J/\psi \to \gamma \,\pi^+ \pi^- \eta' (\eta' \to \pi^+ \pi^- \eta)$$

$$B(J/\psi \to \gamma X) B(X \to \pi^+ \pi^- \eta') = (1.8 \pm 0.7) \times 10^{-4}$$

$$J/\psi \to \gamma \, \pi^+ \pi^- \eta' (\eta' \to \gamma \rho) B(J/\psi \to \gamma X) B(X \to \pi^+ \pi^- \eta') = (2.3 \pm 0.5) \times 10^{-4}$$

□ The mass, width and branching fractions obtained from two different decay modes are consistent with each other.

New resonance X(1835) Mass plots with backgrounds

Background components are different.

13 June 2006

Changchun Zhang Meson2006 Krakow Poland

New resonance X(1835)

Photon angular distributions in $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta' (\eta' \rightarrow \gamma \rho)$

• For Data – it is not inconsistent with 0^{-+} -- statistics is too low.

13 June 2006

Changchun Zhang Meson2006 Krakow Poland

 J/ψ hadronic decays.

Enhanced structure in $J/\psi \rightarrow \gamma \omega \phi$

13 June 2006

Changchun Zhang Meson2006 Krakow Poland

Changchun Zhang Meson2006 Krakow Poland

• MC also show non-uniform and asymmetric distribution of $\cos \theta_p$. $(M_{p\overline{\Lambda}+c.c.} < 2.15 GeV)$

• The enhancement is consistent with S wave.

13 June 2006

Changchun Zhang Meson2006 Krakow Poland

ΛK resonance in chiral SU(3) quark model

- Using chiral SU(3) quark model
- * Based on a coupled-channel study of ΛK and ΣK states
- The phase shift shows the existence of a ΛK resonance between ΛK and ΣK mass threshold.

(F. Huang, Z.Y. Zhang et al. Hep-ph/0501102)

The KA threshold enhancement $N_X^*(1610)$ observed by BESII could be a KA bound state.