

Experimental Studies of Antikaon Mediated Bound Nuclear Systems

- Λ(1405), the doorway state to deeply bound, dense antikaonic nuclear clusters
- First experimental searches and results
- Heavy ion and proton induced reactions
- Size and density of kaonic nuclei
- Antiproton annihilation for double antikaonic nuclei

Λ(1405) the Doorway to Antikaonic Nuclei

Kaonic Hydrogen K-Lines (DEAR)

G. Beer et al. Phys. Rev. Lett. 94 (2005) 212302

SIDDHARTA using SDD's triggered by kaons: K-H,K-D \rightarrow KN isoscalar and –vector scattering length with high accuracy @ DAPHNE, LNF in 2007-08.

MESON 06

Decrease of K⁻ Mass in a Nuclear Medium → Strong Binding by Attractive K⁻N Force

Antikaon Production in Ni-Ni Collisions

P. Kienle, A. Gillitzer

Proc. Int. Conf. Nucl.Phys. (1996) Widerness,SA

Ed,:Stöcker, Gallmann, ,Hamilton, World Scientific

G,Q. Li, C.M. Ko, X.S. Fang, Phys. Lett. **B329,** (!994) 149

Indication of a decrease of the K⁻ mass of ~200 MeV in a nuclear medium with $n/n_0 \sim 2$

Prediction of Lightest Kaonic Nuclear Systems

Strong K⁻ binding in a nuclear medium predicted by Wycech (1986) and pwave contribution (EXA05)

Starting from: K-p atom K-N scattering $\Lambda(1405)$

Strong K⁻ - p attraction (Weise:1996) Nuclear shrinkage

Y. Akaishi and T. Yamazaki, PRC 65 (2002) 044005 T. Yamazaki and Y. Akaishi, PLB 535 (2002) 70

MESON 06

P. Kienle 12.06.06

6

Experimental Search K-ppn @ KEK M. Iwasaki et al., NIM . A473 (2001) 286

⁴He (stopped K⁻, n)K⁻ ³He

First Experimental Results of KEK E471

(M. Iwasaki et al., nucl-ex/0310018 v2, T. Suzuki etal., Phys. Lett. B 597 (2004), 263) S⁰(3115): M = 3117 + 3.8 - 20 (sys) + /-0.9 (stat) Γ< 21.6 MeV, B = -194 MeV with respect to K⁻⁺p+n+n rest mass Predicted NOT to exist! (B~20 MeV; Γ~100 MeV) S⁺(3140): M = 3117 + 3.8 - 20 (sys) + /-2.3 (stat) $\Gamma < 21.6$ MeV, B = -169 MeV with respect to K⁻⁺p+p+n rest mass Predicted with B ~ 110 MeV

Y. Akaishi & T. Yamazaki, Phys. Rev. C 65 (2002) 044005

Schematic Experimental Setups

Detector Arrangement for K⁻(⁴He,n/p) Reactions

Fast Pion Triggered Neutron Momentum Spectra with Various Conditions Preliminary

10MeVee threshold with software veto

MESON 06

10MeVee threshold Larm with software veto 10MeVee threshold Rarm with software veto

Production of Antikaon Nuclear Clusters in High Energy Heavy Ion Collisions

Search for K⁻ Clusters as Residues in Heavy Ion Reactions

- High density medium accommodated in fire balls
- Deep self-trapping centers in fire balls
- Freeze-out phase
- Invariant mass spectroscopy of fragments
 → freeze out.

ppK⁻ →
$$\Lambda$$
+ p
ppnK⁻ → Λ + d
pppK⁻ → Λ + p + p

Use of 4π -Detector for Strangeness Identification in Heavy Ion Reactions

FOPI at GSI

from Kutsche (PhD) 1999

Superb Λ identification

Ni-Ni Collisions @ 1.9A GeV (FOPI) ∧-d Correlation

N. Herrmann, Proc. EXA 05, Vienna 2005

M > M(KEK) Γ > Γ(KEK) Origin:Collision effects?

MESON 06

3.5 GeV pd and p¹²C Collision

The key elementary reactions are

$$p+"n" \to \Lambda^* + K^0 + p ,$$

$$p+"p" \to \Lambda^* + K^+ + p ,$$

In Deuterium $p + d \rightarrow [p + \Lambda^*] + K^0 + p_s \rightarrow ppK^- + K^0 + p_s$ $p + d \rightarrow [p + \Lambda^*] + K^+ + n_s \rightarrow ppK^- + K^+ + n_s$

In Carbon similar processes may occur?

p∧ Invariant Mass Spectrum from 10 GeV/c p¹²C Collisions

P. Zh. Aslanyan, LEAP 05, AIP 0-7354-0248-1/05 p.197

3.5 GeV p-C Collisions @ FOPI Ap-Invariant Mass Spectrum- Preliminary

Methods to Determine the Size, Density and Angular Momentum of Kaonic Nuclear Clusters

- Measurement of the Coulomb energy displacement in the T=1 isospin triplet states.Splitting of ~4 MeV ~> <r²> of cluster.
- Spin-orbit splitting of p3/2-p1/2 in T=1 state is expected ~ 60 MeV and measures ∂V/∂r of cluster.
- Three body decays:[ppnK⁻)_(T=0) → Λ+p+n and [pppK⁻]_(T=1) → Λ+p+p a tool to measure momentum distribution of cluster and decay angular momentum.

Density Distributions in the ppnK- and pppK-Decays with "shrunk" and "normal" Cores

Double Kaonic Nucleus [ppnK⁻K⁻]

GSI SIS100-300: Production of Double Kaonic Nuclear Clusters in Heavy Ion Collisions

Double Kaon Nuclear State Production

Fig. 13. Production processes of double-kaon nuclear states.

K⁻ momentum required:~2.1- 2.5 GeV/c, depending on B J-PARC: K1.8 beamline?

Strangeness Exchange Reaction

Double Antikaon Production in Nuclei by Antiproton Annihilation

• The process:

$$\bar{p} + p \to K^+ + K^+ + K^- + K^- - 0.098 \text{ GeV}$$

• The cross section:

$$\frac{\sigma(\bar{p}\,p \to K^+K^-\pi^+\pi^-)}{\sigma(\bar{p}\,p \to 2\pi^+2\pi^-)} \sim 0.1$$
$$\sigma(\bar{p}\,p \to 2K^+\,2K^-) \sim 10\,\mu b$$

• The kinematics

$$\sqrt{M^2 + \vec{p}_0^2} = 2m_K \qquad p_{0,lab} \simeq 652 \text{ MeV/c}$$

Double kaon production in nuclei:

$$\bar{p} \ ^{4}He \rightarrow K^{+}K^{+} + [K^{-}K^{-}pnn]$$

 $\bar{p} \ ^{6}Li \rightarrow K^{+}K^{+} + [K^{-}K^{-}pp3n]$

→ With the binding energy exceeding ~ 225 MeV, double kaonic nuclei can be produced even by stopped antiprotons.

Maximum Energy and Momentum of K⁺ as Function of the Binding Energy B_{KK}

Exploring Dense Nuclei with K⁻ Bound States

Phase Transitions: Kaon Condensation – Color Superconductivity Signature: Gap in the excitaion spectrum?

MESON 06