• η -Physics at GEM

- 0
- $p + d → η + {}^{3}He$ d + d → η + α (talk by M.Lesiak) 0
- search for η -bound states 0
 - $p + {^7Li} \rightarrow \eta + {^7Be}$
 - $p + {}^{27}AI \rightarrow {}^{3}He + {}^{25}Mg_{\eta}$ (talk by V.Jha)
- precision measurement of the η mass 0

Piotr Hawranek Jagiellonian University

• • | η Meson

- discovered in 1961 in $\pi^+d \rightarrow pp\pi\pi\pi$ reaction
- existence was predicted before discovery
- ηN interaction \rightarrow meson exchange model of strong interaction
- production mechanism not well known
- strong attractive interaction of η meson with nuclei \rightarrow quasi bound states exists ?
- mixture of SU(3) states ($\eta_0 \eta_8 \pi^0$):
 - isospin symmetry breaking
 - u d quark mass difference
 - CP violation

GEM Detector

• • • $| p + d \rightarrow {}^{3}He + \eta$

- total cross sections (SATURNE)
- recently the first angular distributions (ANKE) A. Wrońska et al., Eur. Phys. J. A 26, 421 (2005)

- polarization observables measured by GEM
 - possibility to extract the real and imaginary parts of the partial wave amplitudes
- see talk by M.Lesiak on parallel session !

• • • Search for η -Bound State

- existence of η -mesic nuclei ?
- predicted binding energies and widths have large uncertainties
- practically no data exists on η -nucleus final state
- studying N*(1535) resonance in nuclear matter

• • • $p + {^7Li} \rightarrow {^7Be} + \eta$

Scomparin et al. J Phys G19 (1993) L51

• • Idea

- ⁷Be detected at Big Karl
 - high momentum resolution
 - Iow background
 - strong ionising particle detectors in vacuum

• measurement scheduled in fall 2006

• • • p +
$${}^{27}AI \rightarrow {}^{3}He + {}^{25}Mg_{\eta}$$

measured with Big Karl $p + {}^{27}AI \rightarrow ({}^{3}He) + {}^{25}Mg_{\eta}$ η – nucleus decay products: <u>π</u> p π^0 n $\pi^0 p$ $\eta + N \rightarrow N^*(1535)$ π^{+} n measured with ENSTAR

see talk by V.Jha on parallel session !

New determination of the η-mass (GEM): History

The method three reactions simultaneously: 840 $^{3}H + \pi^{+}$ 820 p_{0,BK} (MeV/c) $p + d \rightarrow \pi^+ + {}^{3}H$ ³He + n 760 ³He 740 720 1620 1600 1610 1630 1640 1650 1660 p_{beam} (MeV/c) first two reactions calibrate magnetic spectrograph

and beam momentum (self calibrating)

relative momentum difference:

Calibrations

- sweeping the beam over the focal plane
- measure full ellipse (deuterons) from pp $\rightarrow d\pi^+$ at 793 MeV/c
- measure pions at various BK settings from $pp \rightarrow \pi^+d$ at 1640 MeV/c

Systematic Error

• • • Result:

• • • Summary

- GEM has measured a series of differential as well as total cross sections for η production with proton and deuteron projectiles and light nuclei as targets
- First polarization observables in d + d $\rightarrow \alpha$ + η allow to fix values (including signs) of the scattering length components
- A dedicated search for a possible bound $\eta\text{-nuclear}$ state has started
- A new value for the η mass has been derived with extremely small error bars