Medium modification of vector mesons in 12-Gev p+A reactions at KEK-PS

R. Muto^(a), J. Chiba^(b), H. En'yo^(a), Y. Fukao^(c), H. Funahashi^(c), H. Hamagaki^(d), M. Ieiri^(b), M. Ishino^(e), H. Kanda^(f), M. Kitaguchi^(c), S. Mihara^(e), K. Miwa^(c), T. Miyashita^(c), T. Murakami^(c), T. Nakura^(c), M. Naruki^(a), K. Ozawa^(d), F. Sakuma^(c), O. Sasaki^(b), H.D. Sato^(c), M. Sekimoto^(b), T. Tabaru^(a), K.H. Tanaka^(b), M. Togawa^(c), S. Yamada^(c), S. Yokkaichi^(a), Y. Yoshimura^(c)

(a) RIKEN
(b) KEK
(c) Kyoto university
(d) CNS, University of Tokyo
(e) ICEPP, University of Tokyo
(f) Tohoku University

We present the experimental results which show ρ , ω and ϕ meson mass modification at normal nuclear density. The aim of our experiment, KEK-PS E325, is to detect possible in-medium modification of vector mesons via the reaction 12GeV/c $p+A\to\rho, \omega, \phi+X\to e^+e^-+X'$. Modification of mass spectral function of vector meson, even at normal nuclear density, have been suggested by many theories as a precursor of the QCD chiral phase transition.

We used C and Cu targets as small and large target nuclei. In the invariant mass spectra of e^+e^- pairs, we observed an excess over the known hadronic sources on the low-mass side of the ω meson peak. [1] The 95 % C.L. allowed parameter regions were obtained as $\rho/\omega < 0.15$ and $\rho/\omega < 0.31$ for C and Cu targets, respectively. These values are much smaller than one, as was previously measured in pp interactions at the same energy. A possible explanation of the small ρ/ω is that the most of the ρ decay inside the nuclei due to their short lifetime, therefore the ρ with the vacuum shape is highly suppressed, and the modified ρ contributes to the excess.

As for ϕ meson, in the high $\beta\gamma$ region, both results obtained from C and Cu targets were consistent with the simulation shape which included no spectral modification. On the other hand, in the low $\beta\gamma$ region, significant excess on the low-mass side of the ϕ meson peak was observed in the Cu data. [2] Since slowly moving mesons in a larger nucleus have a larger probability of decaying inside a nucleus, this results suggest ϕ meson modification in a nucleus.

- [1] M. Naruki et al., Phys. Rev. Lett. **96**, 092301(2006)
- [2] R. Muto et al., nucl-ex/0511019

E-mail: muto@riken.jp