

Results and prospects for $K \rightarrow \pi \nu \bar{\nu}$ at NA62 and KOTO

On behalf of the NA62 collaboration

Nicolas Lurkin

School of Physics and Astronomy, University of Birmingham Meson 2018, 08-06-2018

Outline

- $\Box \quad K \quad \rightarrow \pi \quad \nu \overline{\nu} \quad \text{in theory}$
- \Box $K \rightarrow \pi \ \nu \overline{\nu}$ experimentally
- $\Box \quad K^+ \to \pi^+ \nu \overline{\nu} \text{ at NA62}$
- $igcup K^0 o \pi^0
 u \overline{
 u}$ at KOTO
- $\Box \quad K \quad \rightarrow \pi \quad \nu \overline{\nu} \text{ in the future}$

The $K \rightarrow \pi \nu \bar{\nu}$ Process

Highly suppressed:

- FCNC process forbidden at tree level
- CKM suppression

 $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$

 $\delta P_{c,u}$

6.7 %

 $(s \rightarrow d \text{ coupling}, BR \sim |V_{ts}V_{td}|^2)$

 $P_c^{SD}(X)$

 X_t

other

 $\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})$

14.9 %

 $|V_{ub}|$

[Buras et al., JHEP1511 (2015) 033]

7.1 %

7.0 %

 V_{cb}

 X_t

other

Theoretically clean:

- Dominant short-distance contribution
- > Hadronic matrix element extracted from $BR(K^+ \rightarrow \pi^0 e^+ \nu)$
- Theoretical error budget dominated by CKM parameters

SM Predictions:

 V_{cb}

9.9 %

Nicolas Lurkin, Meson 2018, 08-06-2018

Experimental Status

The NA62 Experiment Fixed target Kaon experiment at CERN SPS

NA62 Beam and Detector

Bea

- NA62:
 - Main goal is $BR(K^+ \rightarrow \pi^+ \nu \overline{\nu})$
 - Fixed target
 - > In-flight decay technique

NA62 Analysis Strategy

Signal and background regions are kept blind throughout the analysis

Decay backgrounds

 $\pi^{+}\pi^{-}e^{+}\nu$ 4.2 × 10⁻⁵

Other backgrounds

Beam-gas interactions

Upstream interactions

BR

63.5%

20.7%

5.6%

Decay mode

 $\mu^+\nu(\gamma)$

 $\pi^+\pi^0(\gamma)$

 $\pi^{+}\pi^{+}\pi^{-}$

PID and high efficiency Veto systems

Muon suppression $> 10^7$

 π^0 suppression > 10^7

Particle ID (Cherenkov + calorimeters) > Pho

Time resolution $\sim O(100 \text{ ps})$ Matching of upstream-downstream activity

NA62 Beam & Detector

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ Signal Selection

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ Signal Regions

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ Single Event Sensitivity

Signal acceptance: 4%

Normalization

- \succ $K^+ \rightarrow \pi^+ \pi^0$ on control trigger
- Acceptance: 10%
- Number of kaon decays in the fiducial volume: $N_K = 1.21(2) \times 10^{11}$

Uncertainties

Source	$\delta SES(10^{-10})$
Random Veto	± 0.17
N_K	± 0.05
Trigger efficiency	± 0.04
Definition of $\pi^+\pi^0$ region	± 0.10
Momentum spectrum	± 0.01
Simulation of π^+ interactions	±0.09
Extra activity	± 0.02
GTK Pileup simulation	± 0.02
Total	±0.24
$SES = (3.15 \pm 0.01_{\text{stat}} \pm 0.01_{\text{stat}})$	$0.24_{\rm syst}$) · 10 ⁻¹⁰

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ Background Summary

	<i>K</i> ⁺	$ ightarrow \pi^+\pi^0(\gamma)$	Process	Expected events (R1+R2)
		Data driven	$K^{+} \rightarrow \pi^{+} \nu \bar{\nu} (SM)$	$0.267 \pm 0.001_{\text{stat}} \pm 0.020_{\text{syst}} \pm 0.032_{\text{ext}}$
	 Control region: 1 observed (1.5 expected) 	Total Background	$0.15 \pm 0.09_{\text{stat}} \pm 0.01_{\text{syst}}$	
_		$K^+ \to \pi^+ \pi^0(\gamma)$ IB	$0.064 \pm 0.007_{stat} \pm 0.006_{syst}$	
	<i>K</i> ⁺	$ ightarrow \mu^+ u_\mu(\gamma)$	$K^+ \to \mu^+ \nu(\gamma)$ IB	$0.020 \pm 0.003_{stat} \pm 0.003_{syst}$
		Data driven	$K^+ \to \pi^+ \pi^- e^+ \nu$	$0.018^{+0.024}_{-0.017}\Big _{\text{stat}} \pm 0.009_{\text{syst}}$
	 Control region: 2 observed (1, 1 expected) 	$K^+ \to \pi^+ \pi^+ \pi^-$	$0.002 \pm 0.001_{\text{stat}} \pm 0.002_{\text{syst}}$	
	<i>K</i> ⁺	$\rightarrow \pi^+ \pi^- e^+ \nu_a$	Upstream Bckg	$0.050^{+0.090}_{-0.030}\Big _{\text{stat}}$

- Estimated with 400ivi IVIC decays
- Good agreement across 5 validation samples

Upstream background (accidental and interactions)

Data driven

Geometrical and Kaon-pion matching cuts effective

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$ Results

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$ Results

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ Results

- One event observed in Region 2
- Full exploitation of the CLs method in progress
- The results are compatible with the Standard Model
 - > $BR(K^+ \to \pi^+ \nu \overline{\nu}) < 11 \times 10^{-10} @ 90\% CL$
 - > $BR(K^+ \to \pi^+ \nu \overline{\nu}) < 14 \times 10^{-10} @ 95\% CL$

For comparison

- $\blacktriangleright BR(K^+ \to \pi^+ \nu \bar{\nu}) = 28^{+44}_{-23} \times 10^{-11} \ @\ 68\% \ CL$
- ► $BR(K^+ \to \pi^+ \nu \bar{\nu})_{SM} = (8.4 \pm 1.0) \times 10^{-11}$
- $\blacktriangleright BR(K^+ \to \pi^+ \nu \bar{\nu})_{exp} = (17.3^{+11.5}_{-10.5}) \times 10^{-11} \text{ (BNL)}$

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ NA62 prospects

Analysis of data collected in 2017 started

- > 20 times more data than the presented statistics
- Expect improvements on signal acceptance, background reduction and reconstruction efficiency
- 2018 Data taking ongoing (April November 2018)
- **Expect** ~ 20 SM events before LS2
- **Data taking after 2018 to be approved**

The KOTO Experiment Study of $K_L \rightarrow \pi^0 \nu \overline{\nu}$ @ J-PARC

Arizona, Chicago, Chonbuk, Hanyang, Jeju, JINR, KEK, Kyoto, Michigan, NDA, NTU, Okayama, Osaka, Pusan, Saga, Yamagata

KOTO Beam & Detector

Ј КОТО

Dedicated to $K_L \rightarrow \pi^0 v \overline{v}$ Step 1: Observation of signal
 Step 2: Measure ~ 100 signal events
 Low-energy K_L beam

olas Lurkin, Meson

KOTO Analysis Strategy

KOTO Beam & Detector

KOTO Runs

KOTO 2013 Result

Data from ~ 100 hours run

►
$$N(K_L) \sim 2.4 \times 10^{11}$$
 (SES 1.3×10^{-8})

Upper limit

KOTO After 2013

G Specific runs using Al target to collect and study neutron induced events

- Neural Network trained to discriminate photon neutron clusters in CsI
- Pulse shape analysis
- \succ \times 5 reduction of neutron background

Beam profile monitor

Better alignment

Thinner vacuum window

- \succ 125 μm → 12.5 μm
- Reduce neutron interaction

New Beam Pipe Charged Veto

- Wire chamber instead of plastic scintillator
- > 99% efficient

 \blacktriangleright Acceptance loss reduced by $\sim 40\%$

KOTO 2015 Analysis

❑ Based on a small subsample of 2015 – 2016 statistics

- ~ 60% more statistics than 2013
- Wider signal region thanks to better background rejection:
 +40% signal acceptance
- > SES ~ 5.9×10^{-9}

Background source	# of events
$K_L \rightarrow 2\pi^0$	0.04 ± 0.03
$K_L \to \pi^+ \pi^- \pi^0$	0.04 ± 0.01
Halo neutrons hitting NCC (upstream)	0.04 ± 0.04
Halo neutrons hitting CsI	0.05 ± 0.02
Total	0.17 ± 0.05

KOTO Prospects

Full 2015 – 2016 analysis:

 \succ < 10⁻⁹ SES

Upgrades needed to reach SM

- New barrel detector (April 2016)
- Beam pipe modification (ongoing)
- CsI both end readout (2018)
- > J-PARC 42 kW \rightarrow 100 kW (2019)

Conclusions

- **The novel NA62 decay-in-flight technique works**
- **SM** sensitivity for $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ reached with the completion of 2016 analysis
- One event observed in 2016 data (expect 0.3 SM in R1+R2)
 - ► $BR(K^+ \to \pi^+ \nu \bar{\nu}) < 14 \times 10^{-10} @ 95\%$ C. L.
- □ Kaon experiment NA62 at CERN and KOTO at J-PARC are exploring physics beyond SM primarily via $K \rightarrow \pi v \overline{v}$ for 10 − 10^3 TeV scale:
 - \succ $K^+ \rightarrow \pi^+ \nu \bar{\nu}$: NA62 measurement expected in the next few years
 - → $K_L \rightarrow \pi^0 \nu \bar{\nu}$: KOTO expected to reach < 10^{-9} sensitivity soon; SM sensitivity expected by 2021
- Both experiment are running and data analysis on-going

On behalf of the NA62 collaboration

Nicolas Lurkin

School of Physics and Astronomy, University of Birmingham Meson 2018, 08-06-2018

CKM Triangle

K physics alone can fully constrain the CKM unitarity triangle

Comparison with B physics can provide description of NP flavour dynamics

NA62 "Luminosity"

2016 run

- \succ 13 × 10¹¹ ppp on target (40% nominal)
- $\sim 1 \times 10^{11} K^+$ decays useful for $\pi \nu \nu$

2017 run

- > 20×10^{11} ppp on target (60% nominal)
- $> 3 \times 10^{12} K^+$ decays collected

Single Event Sensitivity

SES = $(3.15 \pm 0.01_{stat} \pm 0.24_{syst}) \times 10^{-10}$

$K^+ ightarrow \pi^+ \pi^0(\gamma)$ Background

- **Data driven background estimation**
- **Control region validation: 1 event observed (1.5 expected)**

$K^+ \rightarrow \mu^+ \nu_{\mu}(\gamma)$ Background

- **Data driven background estimation**
- **Control region validation: 2 event observed (1.1 expected)**

$K^+ \rightarrow \pi^+ \pi^+ e^- \nu_e$ Background

- **D** Background estimated with 400M MC generated $K^+ \rightarrow \pi^+ \pi^- e^+ \nu_e$ decays
- **Good agreement across the 5 validation samples**

$$N_{\pi^{+}\pi^{-}e^{+}\nu_{e}}^{\text{bg}} = 0.018_{-0.017}^{+0.024} \Big|_{\text{stat}} \pm 0.009_{\text{syst}}$$

Upstream Background

Data driven background estimation

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ Candidate

D The $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ candidate event in the RICH

Nicolas Lurkin, Meson 2018, 08-06-2018