Complete next-to-next-to-leading order calculation of $NN \rightarrow NN\pi$ in chiral EFT

in collaboration with
V. Baru, E. Epelbaum, C. Hanhart, H. Krebs, A. E. Kudryavtsev, and F. Myhrer

Outline:

- Introduction: chiral EFT and $NN \rightarrow NN\pi$
- Why is pion production interesting?
- High accuracy pion production operator
- Importance of Delta(1232)-resonance
- Summary and outlook
Method and goal

Approaches to QCD at low energies:

• Phenomenological models
• Lattice calculations
• Chiral effective field theory
Method and goal

Approaches to QCD at low energies:
- Phenomenological models
- Lattice calculations
- Chiral effective field theory

Chiral EFT - effective field theory of QCD below 1 GeV
- most general Lagrangian compatible with symmetries of QCD
- effective degrees of freedom: pions, nucleons, Delta(1232)-resonance
- systematic expansion in small momenta and small masses
- suited for investigations of $\pi\pi$, πN, NN interactions and nuclear forces

- successful application to pion reactions on few-nucleon systems: $\pi A \rightarrow \pi A$ ($A=2,3,4$), $\pi d \rightarrow \gamma nn$, $\gamma d \rightarrow \pi NN$,...

Our goal is to study $NN \rightarrow NN\pi\pi$ within chiral EFT
Specifics of pion production

NN interactions are non-perturbative [deuteron]

Hybrid chiral EFT method:

1. Calculate irreducible production operator perturbatively in chiral EFT
2. Convolute it with non-perturbative NN wave functions

realistic phenomenological NN WF: CD-Bonn, CCF, AV18, ...

Large transferred momenta

• NN momenta in CMS are large enough to produce a pion

\[|\vec{p}| \sim \sqrt{m_\pi m_N} \sim 360 \text{ MeV} – \text{new scale} \]

Special counting: Momentum Counting Scheme (MCS)

expansion parameter \(\chi_{\text{MCS}} \sim \sqrt{\frac{m_\pi}{m_N}} \)

• Explicit Delta(1232)-resonance \(m_\Delta - m_N \sim 280 \text{ MeV} \sim |\vec{p}| \)
Why is pion production interesting?

- **First inelastic process** in nucleon-nucleon interactions.
- **Several channels:**
 - \(pp \rightarrow pp\pi^0 \) and \(pp \rightarrow d\pi^+ \) cross sections differ by an order of magnitude.

 \[
 \sigma_{\text{tot}}(pp \rightarrow pp\pi^0) \approx 3 \, \mu b \quad \sigma_{\text{tot}}(pp \rightarrow d\pi^+) \approx 43 \, \mu b \quad T_{\text{lab}} = 293.5 \, \text{MeV}
 \]

- **Building block** for more complicated processes:
 - CSB in \(dd \rightarrow \alpha\pi^0 \)
 - 3N forces
 - Pionic deuterium \(\pi d \rightarrow NN \rightarrow \pi d \)

- **Charge symmetry breaking** in \(pn \rightarrow d\pi^0 \)
Why is pion production interesting?

Charge symmetry – invariance under interchange of u- and d-quarks

• Approximate symmetry of QCD
• Explicitly broken by quark mass difference and electromagnetic effects
• On the level of hadrons → invariance under interchange of p and n
Why is pion production interesting?

Charge symmetry – invariance under interchange of u- and d-quarks

- Approximate symmetry of QCD
- Explicitly broken by quark mass difference and electromagnetic effects
- On the level of hadrons → invariance under interchange of p and n

Charge symmetry breaking in \(\text{pn} \rightarrow \text{d} \pi^0 \):

- Interchange of p and n changes differential cross section
- Forward backward-asymmetry \(A_{fb} \propto \left(\frac{d\sigma}{d\Omega}(\theta) - \frac{d\sigma}{d\Omega}(\pi - \theta) \right) / \frac{d\sigma}{d\Omega}(\theta) \)
- Experiment: \(A_{fb} = (17.2 \pm 8 \pm 5.5) \times 10^{-4} \) TRIUMF (2003)
Why is pion production interesting?

Charge symmetry – invariance under interchange of u- and d-quarks

• Approximate symmetry of QCD
• Explicitly broken by quark mass difference and electromagnetic effects
• On the level of hadrons → invariance under interchange of p and n

Charge symmetry breaking in $pn \rightarrow d\pi^0$:

Opper et al. (2003), v.Kolck et al. (2000), Bolton and Miller (2009), AF et al. (2009)

• Interchange of p and n changes differential cross section
• Forward backward-asymmetry $A_{fb} \propto \left(\frac{d\sigma}{d\Omega}(\theta) - \frac{d\sigma}{d\Omega}(\pi - \theta) \right) / \frac{d\sigma}{d\Omega}(\theta)$
• Experiment: $A_{fb} = (17.2 \pm 8 \pm 5.5) \times 10^{-4}$ TRIUMF (2003)

• Theory $A_{fb} \propto Re(M_{s-wave}^{CS} M_{p-wave}^{CS*}) / |M_{s-wave}^{CS}|^2 \propto (m_p - m_n)^{str} / |M_{s-wave}^{CS}|^2$
Why is pion production interesting?

Charge symmetry – invariance under interchange of u- and d-quarks

- Approximate symmetry of QCD
- Explicitly broken by quark mass difference and electromagnetic effects
- On the level of hadrons → invariance under interchange of p and n

Charge symmetry breaking in \(p n \rightarrow d \pi^0 \):

- Interchange of p and n changes differential cross section
- Forward backward-asymmetry \(A_{\text{fb}} \) \(\propto \frac{\frac{d\sigma}{d\Omega}(\theta) - \frac{d\sigma}{d\Omega}(\pi - \theta)}{\frac{d\sigma}{d\Omega}(\theta)} \)
- Experiment: \(A_{\text{fb}} = (17.2 \pm 8 \pm 5.5) \times 10^{-4} \) TRIUMF (2003)
- Theory \(A_{\text{fb}} \propto \frac{\text{Re}(M_{\text{s-wave}}^{\text{CSB}} M_{\text{p-wave}}^{\text{CS*}})}{|M_{\text{s-wave}}^{\text{CS}}|^2} \propto \frac{(m_p - m_n)^{\text{str}}}{|M_{\text{s-wave}}^{\text{CS}}|^2} \)
- s-wave amplitude \(M_{\text{s-wave}}^{\text{CS}} \) is important prerequisite to extract \((m_p - m_n)^{\text{str}} \) – strong part of p – n mass difference
s-wave pion production

Introduction

At threshold only s-wave gives non-zero contribution

General s-wave production amplitude at threshold

\[
M_{\text{th}}(NN \rightarrow NN\pi) = A (\vec{\sigma}_1 \times \vec{\sigma}_2) \cdot \vec{p} \ (\tau_1 + \tau_2) \cdot \phi^* \\
+ B (\vec{\sigma}_1 + \vec{\sigma}_2) \cdot \vec{p} \ (\tau_1 \times \tau_2) \cdot \phi^*
\]

Amplitudes A and B contribute to different reaction channels

- A contributes to \(pp \rightarrow pp\pi^0 \)
- B contributes to \(pp \rightarrow d\pi^+ \)

Goal: derive pion production operators A and B within chiral EFT
s-wave pion production operators

<table>
<thead>
<tr>
<th>$\chi_{\text{MCS}} \sim \sqrt{\frac{m_\pi}{m_N}}$</th>
<th>LO</th>
<th>NLO</th>
<th>NNLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Diagram LO]</td>
<td>![Diagram NLO]</td>
<td>![Diagram NNLO]</td>
<td></td>
</tr>
</tbody>
</table>

For $pp \rightarrow pp\pi^0$ LO rescattering contribution is forbidden, NLO is zero

\Rightarrow effects of **NNLO** loops are very **important**
NNLO loop-diagrams

- **Topologies of NNLO diagrams:**

 \[
g_A^1: \quad \begin{array}{ccc}
 & 1 & \\
 \frac{1}{2} & \bullet & \\
 & \bullet & \\
 \end{array}
 \quad \text{Football}

 \begin{array}{c}
 \bullet \\
 \bullet \quad \bullet \\
 \bullet
 \end{array}
 \quad \text{Type Ia}

 \begin{array}{c}
 \bullet \quad \bullet \\
 \bullet \\
 \bullet
 \end{array}
 \quad \text{Type Ib}

 \begin{array}{c}
 \bullet \\
 \bullet \quad \bullet \\
 \bullet
 \end{array}
 \quad \text{Mini-Football}

 \begin{array}{c}
 \bullet \\
 \bullet \quad \bullet \\
 \bullet
 \end{array}
 \quad \text{Box a}

 \begin{array}{c}
 \bullet \\
 \bullet \quad \bullet \\
 \bullet
 \end{array}
 \quad \text{Box b}
\]

- \(\frac{1}{m_N}\) correction should be included in every vertex
 → **Lots of terms** and lengthy calculation

- Efficient method: collect \(\pi N\) → **\(\pi \pi N\) subgraphs**
NNLO loop-diagrams: calculation method

Collecting subgraphs – efficient way to calculate NNLO loop diagrams

\[g_A: \]
\[\frac{1}{2} \]
Football
\[+ \]
Type Ia
\[+ \]
Type Ib
\[+ \]
Mini-Football
\[= \]
\[\frac{1}{2} \]

\[g_A^3: \]
Type II
\[+ \]
Type IIIa
\[+ \]
Type IIIb
\[+ \]
Type IV
\[+ \]
Box a
\[+ \]
Box b
\[= \]

Operator \(\mathcal{T} \) is the sum of all \(\pi N \rightarrow \pi \pi N \) subgraphs

\[\mathcal{T} = \]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
\[\]
NNLO loop-diagrams: results

• Put [few NNLO terms] into common structures

→ Get full NNLO loop operator
→ Very compact expression

• NNLO loop production operator (simplified in Dim.Reg.):

\[
iM_{\text{nucl}}^{\text{Sym.}} = \frac{g_A^3}{f_\pi^5} v \cdot q \tau^a_+ (i \varepsilon^{\alpha\mu\nu\beta} \gamma_\alpha k_{1\mu} S_{1\nu} S_{2\beta}) (-2I_{\pi\pi})
\]

\[
+ \frac{g_A^3}{f_\pi^5} v \cdot q \tau^a_\times (S_1 + S_2) \cdot k_1 \left(- \frac{19}{24} I_{\pi\pi} + \frac{5}{9} \frac{1}{(4\pi)^2} \right)
\]

\[
+ \frac{g_A f_\pi^5}{f_\pi^5} v \cdot q \tau^a_\times (S_1 + S_2) \cdot k_1 \left(\frac{1}{6} I_{\pi\pi} - \frac{1}{18} \frac{1}{(4\pi)^2} \right)
\]

with only one basic integral:

\[
I_{\pi\pi} = \frac{\mu^e}{i} \int \frac{d^{4-\epsilon} l}{(2\pi)^{4-\epsilon}} \frac{1}{(l^2 - m^2_\pi + i0)((l + k_1)^2 - m^2_\pi + i0)}
\]
Inclusion of Delta(1232) explicitly

Motivation

For $\text{NN} \rightarrow \text{NN}\pi$ Delta-resonance contribution is important

- Typical momenta in $\text{NN} \rightarrow \text{NN}\pi$ is about $p \approx 360 \text{ MeV}$
- Delta-nucleon mass difference $m_\Delta - m_N \approx 280 \text{ MeV}$ → same order as p

→ Delta(1232) should be included as a dynamic degree of freedom

Additional NNLO loop-diagrams with delta:
Explicit Delta: groups and cancellations

- **Same calculation method** as for pure nucleon case: selecting groups
- **Cancellation patterns** for s-wave pion production:

\[\Delta \text{II} + \Delta \text{IIIa} + \Delta \text{IIIb} + \Delta \text{IV} + \Delta \text{Box a} + \Delta \text{Box b} = 0 \]

\[\Delta \text{V} + \Delta \text{VIa} + \Delta \text{VIIa} + \Delta \text{VIIIa} + \Delta \text{IXa} + \Delta \text{IV} = 0 \]

\[\Delta \text{V} + \Delta \text{VIb} + \Delta \text{VIIb} + \Delta \text{VIIIb} + \Delta \text{IXb} + \Delta \text{IV} = 0 \]

- **Finite remainder survives like in NN case**
Explicit inclusion of Delta in NN → NNπ

NNLO loop-corrections to NN → NNπ operator due to explicit Δ(1232)

\[iM_{\Delta\text{-loops}}^{\text{NNLO}} = \frac{g_A g_\pi N A}{f_\pi^5} v \cdot q \tau^a (i\epsilon^{\alpha\mu\nu\beta}v_{\alpha}k_{1\mu}S_{1\nu}S_{2\beta}) \]

\[\times \left\{ \frac{2}{9} \left(I_{\pi\pi} + \frac{1}{2} \frac{J_{\pi\Delta}}{\Delta} + \Delta J_{\pi\pi\Delta} + \frac{2}{(4\pi)^2} \right) + \frac{1}{18} k_1^2 J_{\pi\pi N \Delta} \right\} \]

\[+ \frac{g_A g_\pi N A}{f_\pi^5} v \cdot q \tau_x (S_1 + S_2) \cdot k_1 \]

\[\times \left\{ \frac{5}{9} \left(I_{\pi\pi} + \frac{1}{2} \frac{J_{\pi\Delta}}{\Delta} + \Delta J_{\pi\pi\Delta} + \frac{2}{(4\pi)^2} \right) + \frac{1}{18} k_1^2 J_{\pi\pi N \Delta} \right\} \]

\[+ \frac{8 \delta^2}{9 k_1^2} \left(I_{\pi\pi} + \frac{1}{2} \frac{J_{\pi\Delta}}{\Delta} + \Delta J_{\pi\pi\Delta} + \frac{2}{(4\pi)^2} \right) - \frac{2}{27} \left(I_{\pi\pi} + \frac{1}{2} \frac{J_{\pi\Delta}}{\Delta} + \frac{1}{3} \frac{2}{(4\pi)^2} \right) \] .

Result:

A

B

Correct analytic behavior:
If \(m_\Delta \to \infty \) then the contribution of Delta vanishes (decoupling of Delta)

Appelquist, Carazzone (1975)

No additional unknown LECs
Comparison of Delta- and nucleon-loops

Ratio of long-range loop-contributions: nucleon / Delta

- Explicitly proves MCS counting estimation: delta~p
- Sum of Delta and nucleon-loop contributions:
 - In A: net NNLO effect ~ A_N – of natural size in MCS
 - In B: net NNLO effect is smaller than MCS expectations due to cancellations
 → Both facts are consistent with indications from data:
 - For B there is already a good description of data at NLO
 - For A we probe NNLO contributions directly (LO + NLO ≈ 0)
Summary and outlook

The reaction $NN \to NN\pi$ in Chiral EFT

- Tool to study charge symmetry breaking ($pn \to d\pi^0$)
- Building block for more complicated reactions ($dd \to \alpha\pi^0$, 3NF, ...)
- Cross section puzzle (different cross sections in different channels)

Current results:

- s-wave pion production operator at threshold up to \mathcal{N}^2LO MCS (6%) including explicit Delta(1232)

Next step

- Convolution with nucleon-nucleon wave functions and calculation of the observables
spares
\[V_{\pi N \rightarrow \pi N} = \frac{1}{4f_\pi^2} \epsilon_{abc} \tau^c (\frac{k}{q} + \phi) \]

\[k = q - p + p' \]

can be identically rewritten as:

\[V_{\pi N \rightarrow \pi N} = \frac{1}{4f_\pi^2} \epsilon_{abc} \tau^c (2\phi - \phi + \phi') \]

\[= \frac{1}{4f_\pi^2} \epsilon_{abc} \tau^c \left(2\phi - (\phi - m_N) + (\phi' - m_N) \right) \]

Parts of \(\pi N \rightarrow \pi N \) vertex can cancel nucleon propagators