In-medium \bar{K} mesons
from atoms to strange dibaryons
MESON 2014, Kraków, May-June 2014
Avraham Gal
Racah Institute of Physics, Hebrew University, Jerusalem

- $\bar{K}N - \pi Y$ chiral dynamics and its consequences
- \bar{K} nuclear clusters; strange dibaryons
- \bar{K}-nucleus potentials from K^- atoms
- No \bar{K} condensation on earth

A.Gal, E.Friedman, N.Barnea, A.Cieplý, D.Gazda, J.Mareš
Acta Physica Polonica B 45 (2014) 673-687
$\bar{K}N - \pi Y$ Chiral Dynamics
K^-p scattering amplitude from NLO chiral SU(3) dynamics

Threshold amplitude constrained by SIDDHARTA exp.

Strong subthreshold K^-p attraction; $\Lambda(1405)$ physics;
consequences for kaonic atoms & nuclear clusters

$K^-NN \toYN$ absorption not accounted for by this model.
T. Hyodo, W. Weise, PRC 77 (2008) 035204 $I = 0$ coupled-channel amplitudes

Location of ‘resonances’: $\bar{K}N \approx 1420$ MeV, $\pi\Sigma \approx 1405$ MeV

$\bar{K}N$ pole relatively narrow, and stable to fit variations. $\pi\Sigma$ pole broader, unstable, and affects subthreshold.

IHW (2012): $z_{\bar{K}N}=1424-i26$ MeV, $z_{\pi\Sigma}=1381-i81$ MeV
$K^{-}p$ subthreshold ambiguity

Two NLO chiral-model fits by Guo-Oller, PRC 87 (2013) 035202

- **Fit I:** meson-independent $f = 125.7 \pm 1.1$ MeV.
- **Fit II:** physical values for f_π, f_K, f_η.
 Will create problems when confronted with K^--atom data.
- Amplitudes constrained at threshold by SIDDHARTA.
 $\bar{K}N$ pole robust, $\pi\Sigma$ pole correlated with fit.
K nuclear few-body systems
Energy dependence in \bar{K} nuclear few-body systems

• $\Lambda(1405)$ induces strong energy dependence of the scattering amplitudes $f_{\bar{K}N}(\sqrt{s})$ and the underlying effective single-channel input potentials $v_{\bar{K}N}(\sqrt{s})$.

• $s = (\sqrt{s_{\text{th}}} - B_K - B_N)^2 - (\vec{p}_K + \vec{p}_N)^2 \leq s_{\text{th}}$

• Expanding nonrelativistically near $\sqrt{s_{\text{th}}} \equiv m_K + m_N$:
 $$\delta \sqrt{s} = -\frac{B}{A} - \frac{A-1}{A} B_K - \xi_N \frac{A-1}{A} \langle T_{N:N} \rangle - \xi_K \left(\frac{A-1}{A} \right)^2 \langle T_K \rangle,$$
 $$\delta \sqrt{s} \equiv \sqrt{s} - \sqrt{s_{\text{th}}}, \quad B_K = -E_K, \quad \xi_N(K) \equiv \frac{m_{N(K)}}{(m_N + m_K)}.$$

• Self-consistency: output \sqrt{s} from solving the Schroedinger equation identical with input \sqrt{s}.

3– & 4–body B & Γ calculated self-consistently

- Variational calculation in hyperspherical basis controlled by K_{max}
- $\bar{K}N$ energy dependence [Hyodo–Weise, PRC 77 (2008) 035204] restrains B & Γ by treating $\delta \sqrt{s_{\bar{K}N}}$ self-consistently
- $B(4\text{-body})$ small w.r.t. non-chiral estimates of over 100 MeV
• $\bar{K}NN$: is there an excited $I = 1/2$ quasibound state ($\bar{K}d$, dominantly $I_{NN} = 0$) on top of “K^-pp” g.s.?

• Barnea, Gal & Liverts do not find such a bound state below the Λ^*N threshold at $B = 11.4$ MeV.

• Bayar & Oset [NPA 881 (2012) 127]: **YES**, bound by about 9 MeV, from a peak in $|T_{\bar{K}NN}|^2$ calculated in a fixed-scatterer approximation to Faddeev equations.

• Shevchenko [NPA 890-1 (2012) 50]: **UNLIKELY**, judging from the K^-d scattering length and effective range deduced from a $\bar{K}NN$ Faddeev calculation.

• Shevchenko & Revai [PRC, arXiv:1402.3935]: **NO**, searching for poles in a $\bar{K}NN$ Faddeev calculation.
\(K^-pp \) calculated binding energies & widths

<table>
<thead>
<tr>
<th>(MeV)</th>
<th>chiral, energy dep. calculations</th>
<th>non-chiral, static calculations</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>16</td>
<td>17–23</td>
</tr>
<tr>
<td>(\Gamma)</td>
<td>41</td>
<td>40–70</td>
</tr>
</tbody>
</table>

Robust binding & large widths; chiral models give weak binding

5. T. Yamazaki, Y. Akaishi, PLB \textbf{535} (2002) 70
8. S. Wycech, A.M. Green, PRC \textbf{79} (2009) 014001 (including \(p \) waves)
Yamazaki et al. PRL 104 (2010) 132502, DISTO data reanalysis at 2.85 GeV

Broad K^-pp structure in $pp \to \Lambda pK^+$ at $\pi N\Sigma$ threshold

Forthcoming experiments: $pp \to (K^-pp) + K^+$ at GSI
$K^-^3\text{He} \to (K^-pp) + n$ (E15) & $\pi^+d \to (K^-pp) + K^+$ (E27) at J-PARC
from $\Lambda(1405)N$ to $\Sigma(1385)N$

- $\Lambda(1405)N$ is in a way a doorway to the quasibound $I = 1/2, J^P = 0^- \bar{K}NN$ dibaryon. Lower $S = -1$ components are $\pi\Lambda N$ and $\pi\Sigma N$, the lowest of which is $\pi\Lambda N$, but it cannot support any strongly attractive meson-baryon s-wave interaction.

- The $\pi\Lambda N$ system can benefit from strong meson-baryon p-wave interactions fitted to the $\Delta(1232) \rightarrow \pi N$ and $\Sigma(1385) \rightarrow \pi\Lambda$ form factors. Maximize isospin and angular momentum couplings by full alignment: $I = 3/2, J^P = 2^+$. In particular, ΛN is in 3S_1. This is a Pion Assisted Dibaryon, see Gal & Garcilazo, PRD 78 (2008) 014013.
- Add the $\pi\Sigma N$ channel [PRC 81 (2010) 055205, and finalized in NPA 897 (2013) 167].
A $\pi\Lambda N$ resonance about 10–20 MeV below the $\pi\Sigma N$ threshold is found by solving coupled-channel Faddeev equations. Results are sensitive to the pion-baryon p-wave form factors.

- This resonance is a pion assisted quasibound dibaryon, suggesting doorway states of the type $\Sigma(1385)N$ and $\Delta(1232)Y$, the lower of which is $\Sigma(1385)N$ with $I = 3/2$ and 5S_2, $J^P = 2^+$. These are different labels from the $I = 1/2$ and 1S_0, $J^P = 0^-$ for $\Lambda(1405)N$ viewed as a doorway to K^-pp.
• Adding a $\bar{K}NN$ channel does not help, because the leading $^3S_1\,NN$ configuration is Pauli forbidden.

• Search for this Υ dibaryon at GSI & J-PARC in:

 $p + p \rightarrow \Upsilon^{++} + K^0, \quad \Upsilon^{++} \rightarrow \Sigma^+ + p,$

or $\pi^+ + d \rightarrow \Upsilon^{++} + K^0, \quad \Upsilon^{++} \rightarrow \Sigma^+ + p.$

• A (π^+, K^+) reaction as in E27 would lead to YN decay states similar to those anticipated in searches of $K^- pp$. Another possibility at J-PARC or GSI is:

 $\pi^- + d \rightarrow \Upsilon^- + K^+, \quad \Upsilon^- \rightarrow \Sigma^- + n.$

• **Nonstrange D_{IS} pion assisted dibaryons**

 πNN: $D_{12}(2150) \& D_{21}(?)$

 $\pi N\Delta$: $D_{03}(2370) \& D_{30}(?)$
Pion-assisted $D_{03}(2370)$ $\Delta\Delta$ dibaryon

- Approximate $\pi\pi NN$ problem by $\pi N\Delta'$ problem.
- Separable pair interactions: πN Δ-isobar form factor by fitting $\delta(P_{33})$; $N\Delta'$ $D_{12}(2150)$-isobar form factor by fitting $NN(1D_2)$ scattering.
- 3-body S-matrix pole equation reduces to effective $\Delta\Delta'$ diagram:
• P_{33} form factors of size 0.9 & 1.3 fm:
 $M = 2363 \pm 20$, $\Gamma = 65 \pm 17$ MeV,
in good agreement with WASA@COSY (Clement’s & Workman’s talks here).

• Although bound w.r.t. $\Delta\Delta$, $\mathcal{D}_{03}(2370)$ is resonating w.r.t. the $\pi - \mathcal{D}_{12}(2150)$ threshold.
The subsequent decay $\mathcal{D}_{12}(2150) \rightarrow \pi d$ is seen in the πd Dalitz plot projection.

• NN-decoupled dibaryon resonances \mathcal{D}_{21} & \mathcal{D}_{30} predicted 10–30 MeV higher, respectively;
 see also Bashkanov-Brodsky-Clement “Novel 6q Hidden-Color Dibaryons in QCD”
 PLB 727 (2013) 438 (Bashkanov’s poster here).
What do K^- atoms tell us?
K_{atom}^- widths across the periodic table in model F (deep pot.)

Lowest χ^2 phenom. model, $\chi^2 = 84$ per 65 data points,

Left: K^{-}-Ni 4f atomic wavefunction overlap with nuclear density for deep potential, revealing a nuclear $\ell = 3$ quasibound state.

Right: FINUDA $1s_\Lambda$ formation rates in K_{stop} capture in nuclei [Cieplý-Friedman-Gal-Krejčiřík, PLB 698 (2011) 226]. Deep K^{-} nuclear potential is favored.
Self-consistency requirement imposed in recent K^- atom calculations [Cieplý-Friedman-Gal-Gazda-Mareš, PLB 702 (2011) 402]:

$$\sqrt{s_{K^-N}} \rightarrow E_{th} - B_N - B_K - \xi_N \frac{p_N^2}{2m_N} - \xi_K \frac{p_K^2}{2m_K}$$

$$\xi_{N(K)} = \frac{m_{N(K)}}{(m_N + m_K)}$$

$$\frac{p_K^2}{2m_K} \sim -V_{K^-} \approx 100 \text{ MeV}$$

K^- is not at rest!

Friedman-Gal, NPA 899 (2013) 60

K^-N subthreshold energy vs nuclear density in K^- atoms.

A dominant in-medium effect
Left: IHW free-space input f_{K^-N}
Right: atomic-fit output $F^\text{eff}_{\text{tot}}$

- Subthreshold energy shift is applied self consistently to in-medium 1N amplitude plus $(2+...)N$ phenomenological amplitude.
- Multiple-scattering inclusion of in-medium correlations.
- K^--atom best-fit: $\chi^2/N_{\text{data}} = 118/65$ [Friedman-Gal, NPA 899 (2013) 60].
Full and reduced data set fits \([b(\rho_0) \text{ in fm}] \)

<table>
<thead>
<tr>
<th>N</th>
<th>shallow potential</th>
<th>deep potential</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\chi^2)</td>
<td>Re (b(\rho_0))</td>
</tr>
<tr>
<td>65</td>
<td>130</td>
<td>0.62±0.05</td>
</tr>
<tr>
<td>15</td>
<td>44</td>
<td>0.78±0.13</td>
</tr>
</tbody>
</table>

Reduced sets, C(2p) Si(3d) Ni(4f) Sn(5g) Pb(7i), with upper-level yield & lower-level width & shift, preserve features obtained from fits to full data. Need more accurate measurements in a few atoms. [E. Friedman, in MESON 2010, IJMPA 26 (2011) 468]
Feasibility of upper-level width measurements, on top of lower-level, vs. detector resolution for superconducting microcalorimeter detectors, normalized at 53 eV width for 100 keV x-ray.

condensation on earth?
RMF quasibound spectra calculated self-consistently (NLO30 ‘+ SE’)

D. Gazda, J. Mareˇ s, NPA 881 (2012) 159

- NLO30 is a chirally motivated coupled channel separable model with in-medium versions [A. Ciepl´ y, J. Smejkal, NPA 881 (2012) 115]
- Γ_K due only to $K^-N \rightarrow \pi Y$ (no $K^-NN \rightarrow YN$) decay modes
- Self consistency: deep K^- levels are narrower than shallow ones
Saturation of $B_{\bar{K}}(\kappa)$ in RMF for multi-K^- 40Ca nuclei.

Vector-meson repulsion among \bar{K} mesons.

$B_{\bar{K}}(\kappa \to \infty) << (m_K + M_N - M_\Lambda) \approx 320$ MeV.

Saturation of $B_{\bar{K}}(\kappa)$ in RMF for 208Pb + ηΛ + κK$^-$.

\bar{K} mesons do not replace hyperons in stable self-bound strange matter.
Summary

- Large widths, $\Gamma_\bar{K} > 50$ MeV, expected for single-\bar{K} quasibound nuclear states. Focus on light systems. K^-pp searches are underway in GSI and J-PARC.

- Look for $(I = \frac{3}{2}, J^P = 2^+)\ YN\pi$ dibaryon.

- Major issues: (i) how deep is \bar{K} nuclear spectrum? (ii) how big is $\Gamma(\bar{K}NN \rightarrow YN)$ w.r.t. $\Gamma(\bar{K}N \rightarrow \pi Y)$? Do K^-d atom (SIDDHARTA-II at DAΦNE) & selective K^- atom measurements (JPARC?)

- $B_{\bar{K}}$ saturates in multi-\bar{K} nuclei and hypernuclei. \bar{K} condensation is unlikely in self-bound matter.

- Thanks to my collaborators N. Barnea, A. Cieplý, E. Friedman, D. Gazda, J. Mareš