BABAR studies of conventional and exotic quarkonium states

Claudia Patrignani representing the BABAR Collaboration

Università di Genova and I.N.F.N. Claudia.Patrignani@ge.infn.it

13th International Workshop on Meson Production, Properties and Interaction Kraków, Poland 29th May - 3rd June 2014

Outline

• Study of $B \rightarrow J/\psi \ K \ K \ K$ in preparation • Study of $\eta_c(nS) \rightarrow K^+ K^- \eta$ and $\eta_c(nS) \rightarrow K^+ K^- \pi^0$ in $\gamma\gamma$ reactions arXiv:1403.7051 • Study of $X(3915) \rightarrow J/\psi\omega$ observed in $\gamma\gamma$ reactions PRD 86, 072002 (2012) • Measurement of anti-deuteron production in e^+e^- annihilations and $\Upsilon(nS)$ decays arXiv:1403.4409

The BABAR experiment

PEP-II asymmetric e^+e^- collider operating at center of mass energies near the $\Upsilon(4S)$

 $\sqrt{s} = 10.58 \, \text{GeV}/c^2$

calorimeter

Data samples

As of 2008/04/11 00:00

C. Patrignani - Genova MESON 2014 Kraków, Poland, 29th May - 3rd June 2014

$$B \rightarrow J/\psi \phi(K)$$

Highly suppressed, gluon-rich: good place to search for gluonium/exotics

States decaying to $J/\psi \phi$ in $B \rightarrow J/\psi \phi K$?

Study of $B ightarrow J/\psi$ K K K at BABAR

Studied on the whole BABAR sample at the $\Upsilon(4S)$

Clear $\phi \rightarrow K^+ K^-$ signal – but also non resonant $K^+ K^-$

B channel	Events yield	$\mathcal{B}(\times 10^{-5})$	Efficiency (%)
$B^+ \rightarrow J/\psi K^+ K^- K^+$	595^{+32}_{-31}	$6.05 \pm 0.33 \text{ (stat)} \pm 0.24 \text{ (sys)}$	17.96 ± 0.08
$B^+ \rightarrow J/\psi \phi K^+$	$200{\pm}14$	$4.57 \pm 0.32 \text{ (stat)} \pm 0.13 \text{ (sys)}$	16.20 ± 0.03
$B^0 \to J/\psi K^- K^+ K_S^0$	74 ± 12	$3.55 \pm 0.57 \text{ (stat)} \pm 0.15 \text{ (sys)}$	11.31 ± 0.10
$B^0 \to J/\psi \phi K_S^0$	50 ± 7	$2.53 \pm 0.35 \text{ (stat)} \pm 0.09 \text{ (sys)}$	10.73 ± 0.04
Values in agreement with previous BABAR results			

• non-resonant component measured for the first time

Branching ratios

The ratios of B^0/B^+ and non-resonant/resonant components are compatible with spectator quark model expectations

$$R_{+} = \frac{\mathcal{B}(B^{+} \to J/\psi K^{+} K^{-} K^{+})}{\mathcal{B}(B^{+} \to J/\psi \phi K^{+})} = 1.32 \pm 0.12 \pm 0.07$$

$$R_0 = \frac{\mathcal{B}(B^0 \to J/\psi K^+ K^- K_s^0)}{\mathcal{B}(B^0 \to J/\psi \phi K_s^0)} = 1.40 \pm 0.30 \pm 0.08$$

$$R_{\phi} = \frac{\mathcal{B}(B^0 \to J/\psi \phi K_s^0)}{\mathcal{B}(B^+ \to J/\psi \phi K^+)} = 0.55 \pm 0.10 \pm 0.02$$

$$R_{2K} = \frac{\mathcal{B}(B^0 \to J/\psi K^+ K^- K_s^0)}{\mathcal{B}(B^+ \to J/\psi K^+ K^- K^+)} = 0.59 \pm 0.13 \pm 0.03$$

Search for substructures in $B \rightarrow J/\psi \phi K$

Unbinned maximum likelihood fit with phase-space model with or without the resonances reported by CDF

Fit function weighted by the 2-D efficiency map determined over the Dalitz plot

• fit without resonances (phase space):

$$\chi^2/{
m ndof} = 24.0/15$$

Acceptable fit in both cases

• fit with two resonances (parameters fixed to CDF)

 $\chi^2 / \text{ndof} = 17.2 / 13$

Upper limits

No evidence for new resonances

The 90%CL upper limits on the the fit fractions of the two resonances

- $f_{X(4140)} < 12.1\%$ @90%CL
- f_{X(4270)} < 16.4% @90%CL

are not incompatible with any of the previous measurements

Experiment	[ref	$M_{X(4140)}$	۲ _{X(4140)}	^f X(4140)
		[Mev/c]	[Mev]	[/0]
CDF	PRL102.242002(2009)	$4143.2 \pm 2.9 \pm 1.2$	$^{11.7^{+8.3}_{-5.0}\pm3.7}$	-
CDF	arXiv:1101.6058	$^{4143.6^{+2.9}_{-3.0}\pm0.6}$	$15.3^{+10.4}_{-6.1}\pm2.5$	$14.9\pm2.9\pm2.4$
LHCb	PRD85,091103(2012)	-	-	< 7
CMS	arXiv:1309.6920	$4148.2 \pm 2.4 \pm 6.3$	$^{28}_{-11}^{+15}\pm19$	13.4 \pm 3.0 (*)
D0	PRD89,012004(2014)	$4159.0 \pm 4.3 \pm 6.6$	$19.9 \pm 12.6^{+1.0}_{-8.0}$	$19\pm7\pm4$
		M _{X(4270)}	Г _{X(4270)}	^f X(4270)
		$[MeV/c^2]$	[MeV]	[%]
CDF	arXiv:1101.6058	$4274.6^{+8.4}_{-6.7}\pm1.9$	$^{32.3}_{-15.3}^{+21.1}\pm7.6$	-
LHCb	PRD85,091103(2012)	-	-	< 8
CMS	arXiv:1309.6920	$4314.0 \pm 5.3 \pm 7.3$	${}^{38}_{-15}^{+30}\pm16$	18.0 \pm 7.3 (*)
D0	PRD89,012004(2014)	\approx 4360	30(fixed)	-
		(*) estimated from	the number of sig	gnal events quoted

C. Patrignani - Genova MESON 2014 Kraków, Poland, 29th May - 3rd June 2014

$\gamma\gamma$ reactions

Electron and positron beams emit (quasi-real) photons which interact and may form resonances

- Final state e^{\pm} emitted along beam direction undetected
- allowed $J^{PC} = 0^{\pm +}, 2^{\pm +}$ (and $4^{\pm +}, 3^{++}, 5^{++}, ...$)
- low p_t with respect to beam axis

$\eta_c(1S)$ and $\eta_c(2S)$ studies in $\gamma\gamma$

Ongoing program in BABAR to study exclusive $\eta_c(nS)$ decays in $\gamma\gamma$ reactions

• $\eta_c(nS)$ decays not well known:

$$\sum \mathcal{B}(\eta_c(1S)) pprox 20\%; \qquad \sum \mathcal{B}(\eta_c(2S)) pprox 5\%$$

- large event yield, proportional to $\Gamma_{\gamma\gamma} imes \mathcal{B}_{\textit{fin}}$
- excellent S/B: non resonant hadronic cross section small

$$\eta_c(nS) o K^+ K^- \pi^0$$
 and $\eta_c(nS) o K^+ K^- \eta$

• \mathcal{B} 's not well measured:

BESIII studied $\psi(2S)
ightarrow \pi^0 h_c
ightarrow \pi^0 \gamma \eta_c$ decays

- 6.7 \pm 3.2 events for $\eta_c(nS) \rightarrow K^+K^-\eta$
- 54.9 \pm 9.2 events for $\eta_c(nS) \rightarrow K^+ K^- \pi^0$

PRD86, 010001 (2012)

- no published Dalitz plot study of η_c decays to 3 pseudoscalars
 - can study poorly known scalar states
 - search for new gluonic states, so far searched in $J\!/\psi
 ightarrow \gamma$ hadrons

15

Branching fraction measurements

Channel	Event yield	Weights	\mathcal{R}	Significance
$\eta_c \rightarrow K^+ K^- \pi^0$	$4518 \pm 131 \pm 50$	17.0 ± 0.7		32σ
$\eta_c \to K^+ K^- \eta \ (\eta \to \gamma \gamma)$	$853 \pm 38 \pm 11$	21.3 ± 0.6		21σ
$\mathcal{B}(\eta_c \to K^+ K^- \eta) / \mathcal{B}(\eta_c \to K^+ K^- \pi^0)$			$0.602 \pm 0.032 \pm 0.065$	
$\eta_c \to K^+ K^- \eta \ (\eta \to \pi^+ \pi^- \pi^0)$	$292 \pm 20 \pm 7$	31.2 ± 2.1		14σ
$\mathcal{B}(\eta_c \to K^+ K^- \eta) / \mathcal{B}(\eta_c \to K^+ K^- \pi^0)$			$0.523 \pm 0.040 \pm 0.083$	
$\eta_c(2S) \rightarrow K^+ K^- \pi^0$	$178 \pm 29 \pm 39$	14.3 ± 1.3		3.7σ
$\eta_c(2S) \rightarrow K^+ K^- \eta$	$47 \pm 9 \pm 3$	17.4 ± 0.4		4.9σ
$\mathcal{B}(\eta_c(2S) \to K^+ K^- \eta) / \mathcal{B}(\eta_c(2S) \to K^+ K^- \pi^0)$			$0.82 \pm 0.21 \pm 0.27$	
$\chi_{c2} \rightarrow K^+ K^- \pi^0$	$88\pm27\pm23$			2.5σ
$\chi_{c2} \rightarrow K^+ K^- \eta$	$2 \pm 5 \pm 2$			0.0σ

Weighted mean of the two $K^+K^-\eta$ decay modes:

$$\eta_{c}(1S): \qquad \mathcal{R}(\eta_{c}) = \frac{\mathcal{B}(\eta_{c} \to K^{+}K^{-}\eta)}{\mathcal{B}(\eta_{c} \to K^{+}K^{-}\pi^{0})} = 0.571 \pm 0.025 \pm 0.051$$

 $\mathsf{BESIII:}\ 0.46\pm0.24$

PRD86, 010001 (2012)

$$\mathcal{R}(\eta_c(2S)) = \frac{\mathcal{B}(\eta_c(2S) \to K^+ K^- \eta)}{\mathcal{B}(\eta_c(2S) \to K^+ K^- \pi^0)} = 0.82 \pm 0.21 \pm 0.27$$

 $\eta_c(2S)$

INFI

MESON 2014 Kraków, Poland, 29th May - 3rd June 2014 C. Patrignani - Genova

17

T

MESON 2014 Kraków, Poland, 29th May - 3rd June 2014 C. Patrignani - Genova

18

$K_0^*(1430)$ properties

arXiv:1403.7051

Likelihood scan for $K_0^*(1430)$ parameters in $\eta_c \to K^+ K^- \pi^0$ Dalitz plot fit

19

$\gamma\gamma\to {\rm J}/\psi\omega$

but there are other resonances in the same final state or mass rang

• Y(3940) decaying to $J/\psi\omega$ has been observed in B decays

Study of $X(3915)
ightarrow J/\psi\omega$ in $\gamma\gamma$ reactions at BABAR

X(3915) confirmed by BABAR:

Resonance parameters in agreement with Belle:

$$\begin{split} M &= 3919.4 \pm 2.2 \pm 1.6 \text{ MeV}/c^2 \\ \Gamma &= 13 \pm 6 \pm 3 \text{ MeV} \\ \Gamma_{\gamma\gamma} \cdot \mathcal{B}(J\psi\omega) &= 52 \pm 10 \pm 3 \text{ eV} \quad (J=0) \\ \Gamma_{\gamma\gamma} \cdot \mathcal{B}(J\psi\omega) &= 10.5 \pm 1.9 \pm 0.6 \text{ eV} \quad (J=2) \end{split}$$

If $\Gamma_{\gamma\gamma} = \mathcal{O}(1 \text{ keV})$ (typical $c\bar{c}$), then $\mathcal{B}(J/\psi\omega) > (1-6)\%$

Angular distribution for $\gamma \gamma \rightarrow J/\psi \omega$

Angular analysis follows J. L. Rosner, PRD 70, 094023 (2004)

Since events have low p_t the $\gamma\gamma$ collision axis is approximately along the beam axis.

The angles are defined in three different center of mass frames: $J/\psi\omega$, J/ψ , and ω .

The normal to the ω decay plane defines the axis orientation

No background subtraction:

assume that all events in 3890 $< {\it M}(J\psi\omega) <$ 3950 ${\rm MeV}/c^2$ are from X(3915) decay

X(3915): J=0 or J=2?

The efficiency corrected distributions for events in the X(3915) signal region in each of the three discriminating angles favors J = 0 over J = 2

Angle	$J^P = 0^{\pm}$	$J^{P} = 2^{+}$	(ND
$ heta_l^*$	1	$1 + \cos^2 \theta_l^*$	
χ^2	11.2	16.9	
θ_n^*	1	$\sin^2 \theta_n^*$	
χ^2	6.9	65.9	
θ_{ln}	$\sin^2\theta_{ln}$	$7 - \cos^2 \theta_{ln}$	
χ^2	12.5	18.0	
θ_h	1		
χ^2	12.2		

Overall J=0 strongly preferred over J=2

PRD 86, 072002 (2012)

23

X(3915): 0⁻ or 0⁺?

The efficiency corrected distributions for events in the X(3915) signal region in three discriminating angles favors 0^+ over 0^-

24

Inclusive anti-deuteron production in $\Upsilon(nS)$ decays

Excess of anti-nuclei in cosmic rays can indirectly probe Dark Matter

annihilation Cui, Mason, Randall JHEP 1011,017(2010)

Dal, Kachelriess PRD 86, 103536(2012)

Vittino.Fornengo.Maccione arXiv:1308.4848

- colored partons hadronization into nuclei
 - \implies processes involving 6-quarks in close proximity

 e^+e^- annihilations offer a clean environment, both in continuum and in $\Upsilon(nS)$ decays

previous measurements from

- ARGUS PLB 236,102(1990) , CLEO PRD 75,012009(2007) at $\Upsilon(1S)$ and $\Upsilon(2S)$
- Aleph PLB 639,192(2006) for e^+e^- at $E_{CM} = 91.2 \text{ GeV}$

BABAR search in both resonant and continuum samples: arXiv:1403.4409

Resonance	Onpeak	# of Υ Decays	Offpeak
$\Upsilon(4S)$	$429{\rm fb}^{-1}$	463×10^6	$44.8\mathrm{fb}^{-1}$
$\Upsilon(3S)$	$28.5{\rm fb}^{-1}$	116×10^6	$2.63{\rm fb}^{-1}$
$\Upsilon(2S)$	$14.4{\rm fb}^{-1}$	98.3×10^6	$1.50\mathrm{fb}^{-1}$
also: $\Upsilon(1S)$ sample from $\Upsilon(2S) \to \pi^+\pi^- X$			
		4k	

C. Patrignani - Genova MESON 2014 Kraków, Poland, 29th May - 3rd June 2014

Anti-deuteron yield

Most deuterons produced in interactions of particles with detector material: restrict analysis to anti-deuterons

• (anti)-deuterons heavy: highly ionizing, no (or little) Čerenkov light

The number of events with an anti-deuteron is determined – in each bin of CM momentum – from a fit to the residual of the expected dE/dx

arXiv:1403.4409

Branching fractions

arXiv:1403.4409

- *\(\U015)\)* and *\(\U015)\)* branching fractions compatible with previous measurements
- significant improvement in Υ(2S) branching fraction
- $\Upsilon(3S)$ branching fraction measured for the first time
- measurement of continuum cross section at $\sqrt{s}\approx 10.58~{\rm GeV}$

Process	Rate
$\mathcal{B}(\Upsilon(3S) \to \bar{d}X)$	$(2.33\pm0.15^{+0.31}_{-0.28})\!\times\!10^{-5}$
$\mathcal{B}(\Upsilon(2S) \to \bar{d}X)$	$(2.64 \pm 0.11^{+0.26}_{-0.21}) \times 10^{-5}$
$\mathcal{B}(\Upsilon(1S) \to \bar{d}X)$	$(2.81 \pm 0.49^{+0.20}_{-0.24}) \times 10^{-5}$
$\sigma(e^+e^- \to \bar{d}X) \ [\sqrt{s} \approx 10.58 \text{GeV}]$	$(9.63 \pm 0.41^{+1.17}_{-1.01})$ fb
$\frac{\sigma(e^+e^- \to \bar{d}X)}{\sigma(e^+e^- \to \text{Hadrons})}$	$(3.01 \pm 0.13^{+0.37}_{-0.31}) \times 10^{-6}$

 \overline{d} production suppressed by one order of magnitude in quark-dominated $e^+e^- \rightarrow q\overline{q}$ with respect to gluon-dominated $\Upsilon(nS)$ decays

Conclusions

- Study of $B \rightarrow J/\psi \ K \ K \ (K)$
 - Branching fractions and ratios measured
 - X(4140) and X(4270): no evidence
- $\eta_c(nS) \to K^+ K^- \eta$ and $\eta_c(nS) \to K^+ K^- \pi^0$ in $\gamma \gamma$ reactions
 - First observation of $\eta_c(1S) \to K^+ K^- \eta$ and first evidence for $\eta_c(2S) \to K^+ K^- \eta$
 - first Dalitz plot analysis of these modes
 - Decay dominated by pseudoscalar-scalar two-body
 - large contribution from $\eta_c(1S)
 ightarrow \eta_f_0(1500)$
 - First observation of $K_0^*(1430) \rightarrow K^{\pm}\eta$ new measurement of $K_0^*(1430)$ parameters
- Study of X(3915) $ightarrow J/\psi\omega$ observed in $\gamma\gamma$ reactions
 - Confirm the state observed by Belle
 - Study of angular distribution suggests 0^{++} $\chi_{c0}(2P)$??
- Measurement of anti-deuteron production in e^+e^- annihilations and $\varUpsilon(nS)$ decays

many new results also from ISR:

 \implies see E. Solodov talk this afternoon (parallel session B)