Recent results and progress from LEPS and LEPS2 at SPring-8

HOTTA, Tomoaki
(RCNP, Osaka University)
on behalf of
the LEPS&LEPS2 collaboration
Outline

• Introduction to the LEPS/LEPS2 experiments
• Recent results from LEPS
 – Search for K^-pp bound state
 – $\Xi^+(1530)$: new data and analysis
• Current status of LEPS2
• Summary
Laser-Electron Photon @ SPring-8

- SPring-8: 8-GeV Synchrotron Radiation facility
 - Electron storage ring dedicated to SR light source.
- 2 beamlines (LEPS & LEPS2) are operated at the same time.

Compton Scattering

E_γ Tagging

Backscattered photon \rightarrow

UV or DUV Laser
$\lambda = 351$ nm, 257 nm
Properties of LEPS/LEPS2 beam

- 355 nm or 351 nm UV laser \rightarrow 2.4 GeV (max.)
- 266 nm or 257 nm Deep UV laser \rightarrow 2.9 GeV (max.)
- Tagged photon $E_{\gamma} > 1.5$ GeV, \sim10 MeV resolution.
- Laser: \sim100% polarized \rightarrow Highly polarized γ beam.
LEPS Detector Setup

Forward Spectrometer
- TOF : RF signal - TOF wall, $\Delta t = \sim 150$ ps
- Momentum : $\Delta p \sim 6$ MeV/c for 1 GeV/c K
- Acceptance : Hori $\pm 20^\circ \times$ Vert $\pm 10^\circ$

TPC
- $20^\circ < \theta < 140^\circ$
- $\Delta P/P \sim 0.2$
- $\Delta \phi \sim 0.04$ rad
Recent results from LEPS

Forward spectrometer

• $\kappa(800)$ exchange in $\gamma p \rightarrow K^*0 \Sigma^+$ reaction. Hwang et al., PRL108, 092001(2012)

• K^-pp bound state search in $\gamma d \rightarrow K^+\pi^-X$ reaction. Tokiyasu et al., PLB728(2014)616

• $\Theta^+(1530)$ photoproduction (new data)

Forward spectrometer + TPC

• $\Lambda(1405)$ photoproduction at $E_\gamma = 3$ GeV

• ω and η' photoproduction at backward angles. arXiv:1306.3031
$K^{-}pp$ bound state

- strong $\bar{K}N$ attraction in $I = 0$ channel.
- Existence of **Kaonic Nuclei** is suggested.
- $\bar{K}NN$ is the lightest kaonic nuclei.
- $K^{-}pp$: strongest binding $\bar{K}NN$ system.
- Investigating sub-threshold $\bar{K}N$ interaction.
- Theoretical prediction, depending on models

 Binding Energy = $9 - 95$ MeV, Width = $34 - 110$ MeV
Possible candidates

FINUDA: Stopped K^- on nuclear targets

PRL 94, 212303 (2005)

\[B.E. = 115^{+6}_{-5} \text{(stat)}^{+3}_{-4} \text{(syst)} \]

\[\Gamma = 67^{+14}_{-11} \text{(stat)}^{+2}_{-3} \text{(syst)} \text{MeV} \]

Peak structure in $\rho\Lambda$ invariant mass
Possible candidates

DISTO: \(pp \rightarrow pK^+\Lambda \) reaction

Peak structure in \(K^+ \) missing mass

\[B.E. = 103 \pm 3(\text{stat}) \pm 5(\text{syst}) \]
\[\Gamma = 118 \pm 8(\text{stat}) \pm 10(\text{syst}) \text{MeV} \]
Our search

$$\gamma d \rightarrow K^+ \pi^- X$$ reaction

Tokiyasu et al., PLB 728(2014)616

$$E_\gamma = 1.5 - 2.4 \text{ GeV}$$

Detecting $$K^+$$ and $$\pi^-$$ at forward

$$\rightarrow$$ Low momentum transfer

$$(0.1 - 0.4 \text{ GeV/c})$$

detected

$$K^-pp$$ bound state
Result

\[\gamma d \rightarrow K^+ \pi^- X \]

missing mass

Log-likelihood test if the fitting improved with \(K^-pp \) bound state signal

No significant peak in \(M = 2.22 - 2.36 \text{ GeV}/c^2 \) (B.E. = 10 – 150 MeV)

\(\gamma n \rightarrow \Lambda K^+ \)
\(\gamma p \rightarrow \Sigma^+ K^- \)
\(\gamma p \rightarrow \Lambda(1520) K^+ \)
\(\gamma n \rightarrow \Lambda \pi^0 K^+ \pi^- \)
\(\gamma n \rightarrow \Sigma^0 \pi^0 K^+ \pi^- \)
\(\gamma n \rightarrow \Sigma^0 (1385) K^- \pi^- \)

Tokiyasu et al., PLB 728(2014)616
Upper limit

Upper Limit of the $K^0 p p$ production

\[\frac{d^2\sigma}{d\cos\theta_{K^0} d\cos\theta_p} \text{[}\mu b]\] vs Missing Mass [GeV/c^2]

- \(\Gamma = 20 \text{ MeV} \)
- \(\Gamma = 60 \text{ MeV} \)
- \(\Gamma = 100 \text{ MeV} \)

<table>
<thead>
<tr>
<th>(\Gamma) (MeV)</th>
<th>Upper Limit ((\mu b))</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.17 – 0.55</td>
</tr>
<tr>
<td>60</td>
<td>0.55 – 1.7</td>
</tr>
<tr>
<td>100</td>
<td>1.1 – 2.9</td>
</tr>
</tbody>
</table>

at 95% C.L.

Hyperon production

\(\sim 11 \mu b \)

Tokiyasu et al., PLB 728(2014)616
Quasi-free Background

Missing mass spectra for $\gamma N \rightarrow K^+\pi^-X$ and $\gamma N \rightarrow K^+X$ were fitted simultaneously.

Tokiyasu et al., PLB 728(2014)616
\[\Theta^+(1530) \]

- \(S = +1, \ Q = +1 \) Baryon minimal content: \(\text{(uudds)} \) → Pentaquark
 - Light and narrow (chiral quark soliton model)

- Width estimation by \(K^+ n \rightarrow \Theta^+ \) reaction
 - \(0.36 \pm 0.11 \text{ MeV/c}^2 \) (DIANA)
 - \(< 0.64 \text{ MeV/c}^2\), upper limit (Belle)

Its existence is still controversial.
Evidence with 5.1σ statistical significance was reported as PRC79, 025210(2009)

\rightarrow New data with higher statistics, same detector setup
Results of inclusive analysis

New data
2.6 times more statistics than the previous data.

- Blind analysis: Cuts are pre-determined.
- Narrow strong structure is not seen in the signal region.
- The significance is less than 2σ, if we perform the same shape analysis as the previous analysis.
Results of inclusive analysis

New data v.s.

previous data

Normalized by entry

- In total, two data sets are consistent.
- $\chi^2/\text{ndf}=56.4/66$
 KS-test 58.8%

Fluctuation?
Human bias?
Over/under-estimation?
→ Exclusive analysis
Exclusive analysis

SIGNAL

\[
\gamma p \rightarrow K^-\Theta^+
\]

\[
\gamma n \rightarrow \phi n \rightarrow K^+K^-n
\]

...

Background

\[
\gamma p \rightarrow K^+\Lambda(1520)
\]

\[
\gamma p \rightarrow \phi p \rightarrow K^+K^-p
\]

...

(0.3 – 0.8 GeV/c)
Detection of recoil proton from BG

Using dE/dx information in start counter

$QF \gamma n$ event + $QF \gamma p$ event p: out of acceptance

$QF \gamma p$ event p: tagged

Efficiency $\approx 60\%$
Detection of recoil proton from BG

Using dE/dx information in start counter

QF γn event + QF γp event

p: out of acceptance

Efficiency $= \sim 60\%$

Signal enhancement is seen.

QF γp event p: tagged

Preliminary
Subtraction of proton BG

2 methods for BG estimation

- **Red**: dE/dx method
 - Strict cut for vertex position to improve the rejection efficiency.
 - # of event reduced (normalized in histogram)

- **Black**: Monte-Carlo based estimation
 - MC fit for proton tagged sample → BG estimation for full data sample.

We are now taking data with improved recoil p acceptance
Setup of the current run

Large Start Counter to improve proton tagging/rejection efficiency.
LEPS2 experiments

- 2nd LEPS beamline at SPring-8
 - Can be operated with LEPS at the same time.

- Aiming to obtain 10^7/sec photon beam with improved laser injection system.

- Large acceptance detector in larger experimental hall
Current Status of LEPS2

Oct. 2013: Tagged photon beam became available.

2 experimental setups:

• **BGOegg**: egg-shaped BGO detector array.

• **Solenoidal spectrometer** (magnet from BNL-E949)
 – Magnet is ready.
 – Construction and development of the detectors are underway.
BGOegg detector

- 1320 BGO crystals covers 22 – 144 deg.
- 1.3% energy resolution, 3.1mm position resolution for 1 GeV photon.
- Used with cylindrical drift chamber inside.
- TOF detector at forward angles.
Physics programs with BGOegg

• Search for $\eta'(958)$ mesic nucleus
 – $U_A(1)$ anomaly effect in medium.

Nagahiro, Hirezaki, PRL94, 232503 (2005)
(Discussed in this session)

• $\gamma N \rightarrow \eta'(958)N$ elementary process with H_2/D_2 target
 – Cross section, beam asymmetry...etc.
LEPS2 solenoidal spectrometer

Detector construction is underway.

Magnet from BNL-E949
\(\Theta^+(1530) \) search at LEPS2

\[pK_S \text{ invariant mass} \quad \overline{K^{*0}} \text{ missing mass} \]

- Without Fermi-motion correction, \(\phi \) background.
- Overwrap with CLAS acceptance
Summary

• **LEPS** and **LEPS2** are now in operation at SPring-8.
• Recent results for K^-pp bound state and Θ^+ pentaquark have been presented.
• BGOegg experiment at **LEPS2** has been started.
• Construction of **LEPS2** solenoidal spectrometer is underway.
LEPS & LEPS2 collaboration

• Japan
 – RCNP, RIKEN, Kyoto, ELPH/Tohoku, KEK, Gifu, Tokyo, Chiba, Nagoya,…

• Taiwan
 – Academia Sinica

• Korea
 – Korea U., Seoul U.

• USA
 – Ohio U.

• Canada
 – U. Saskatchewan

• Russia
 – JINR Dubna

International Collaboration, but not a Huge group
LEPS & LEPS2 collaboration

• Japan
 – RCNP, RIKEN, Kyoto, ELPH/Tohoku, KEK, Gifu, Tokyo, Chiba, Nagoya,…

• Taiwan

• Korea
 – Korea U., Seoul U.

• USA

We welcome your participation in LEPS/LEPS2 !!

• Canada
 – U. Saskatchewan

• Russia
 – JINR Dubna