Exclusive production in CMS

Gustavo Silveira

gustavo.silveira@cern.ch

Centre for Cosmology, Particle Physics and Phenomenology (CP3)
Universite catholique de Louvain (UCL), Belgium

on behalf of the CMS Collaboration
Outline

- CMS detector and capabilities for forward physics;
- Possibilities of meson photo-production in CMS;
- Probing central exclusive processes at high-energies;
 - Measurement of exclusive $\gamma\gamma \rightarrow e^+e^-, \mu^+\mu^-$ production;
- Measurement of exclusive $\gamma\gamma \rightarrow \mu^+\mu^-$ at large masses;
- Exclusive production of massive electroweak-boson pairs;
 - Search for exclusive $\gamma\gamma \rightarrow W^+W^-$ production;
 - Limits on anomalous quartic gauge couplings.
Large Hadron Collider

<table>
<thead>
<tr>
<th>Year</th>
<th>E_{pp}</th>
<th>E_{PbPb}</th>
<th>L (pb$^{-1}$)</th>
<th>L (μb$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>7 TeV</td>
<td>2.76 TeV</td>
<td>44.22</td>
<td>7.00</td>
</tr>
<tr>
<td>2011</td>
<td>7 TeV</td>
<td>2.76 TeV</td>
<td>6.13</td>
<td>157.57</td>
</tr>
<tr>
<td>2012</td>
<td>8 TeV</td>
<td></td>
<td>23.30</td>
<td>-</td>
</tr>
<tr>
<td>2013</td>
<td>2.76 TeV</td>
<td>5.02 TeV</td>
<td>5.51</td>
<td>35.50</td>
</tr>
<tr>
<td>2015</td>
<td>13 TeV</td>
<td></td>
<td>L ~ 50.00</td>
<td>(expected)</td>
</tr>
</tbody>
</table>
The CMS experiment

- **Total weight**: 14k tonnes
- **Overall diameter**: 15.0 m
- **Overall length**: 28.7 m
- **Magnetic field**: 3.8 T

Electromagnetic Calorimeter (ECAL)
- EB (|\eta| < 1.48) + EE (1.48 < |\eta| < 3.00)

Hadron Calorimeter (HCAL)
- HB + HO: (|\eta| < 1.3)
- HE: 1.3 < |\eta| < 3.0

Steel Return Yoke
- 12,500 tonnes

Superconducting Solenoid
- Ni-Ti coil carrying 18,000 A

Silicon Trackers
- (|\eta| < 2.5)

Muon Chambers
- Preshower (1.65 < |\eta| < 2.6)

Hadronic Forward (HF)
- (2.9 < |\eta| < 5.2)

CASTOR: 5.3 < |\eta| < 6.6
- **ZDC**: |\eta| > 8.1
 - (not used in these analyses)
Outline

- CMS detector and capabilities for forward physics;
- Possibilities of meson photo-production in CMS;
- Probing central exclusive processes at high-energies;
 - Measurement of exclusive $\gamma\gamma \rightarrow e^+e^-, \mu^+\mu^-$ production;
 - Measurement of exclusive $\gamma\gamma \rightarrow \mu^+\mu^-$ at large masses;
- Exclusive production of massive electroweak-boson pairs;
 - Search for exclusive $\gamma\gamma \rightarrow W^+W^-$ production;
 - Limits on anomalous quartic gauge couplings.
Exclusive processes at the LHC

- The exclusive production of light and heavy pairs is represented by:

\[pp \rightarrow p^*(\gamma\gamma, \ell^+\ell^-, W^+W^-) + p^*(\gamma\gamma, \ell^+\ell^-, W^+W^-) \]

- Intact protons in the final states, however also accounting for proton dissociation \(p^* \);
- No other particles in the final states;
- \(\gamma\gamma \): tests for theoretical prediction for exclusive Higgs production and to measure gluon density at small-\(x \);
- \(\ell^+\ell^- \): comparison to precision QED predictions and to study of proton dissociation;
- \(W^+W^- \): study of exclusive processes at high mass and constraint of anomalous couplings.
Meson photo-production in CMS: $J/\psi \rightarrow \mu^+\mu^-$

- Simulation with exactly 2 opposite-sign muon tracks with no other tracks;
- Consider exclusivity cuts of $\Delta \phi(\mu\mu)/\pi > 0.9$ and $\Delta p_T(\mu\mu) < 1.5$ GeV.

<table>
<thead>
<tr>
<th>$m = 3.05 \pm 0.03$ GeV</th>
<th>$\Delta \phi(\mu\mu)/\pi = 0.98$</th>
<th>$\Delta p_T(\mu\mu) = 0.05$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Track: $p_T > 0$ GeV</td>
<td>HCAL: $E > 4$ GeV</td>
<td>ECAL: $E > 2.5$ GeV</td>
</tr>
</tbody>
</table>
Meson photo-production in CMS: $\gamma \rightarrow \mu^+\mu^-$

- Studies in the **Upsilon mass** range with exactly 2 opposite-sign muon tracks with no other tracks in the event;
- Consider exclusivity cuts of $\Delta \phi(\mu\mu)/\pi > 0.9$ and $\Delta p_T(\mu\mu) < 1.5$ GeV.

<table>
<thead>
<tr>
<th>$m = 9.44 \pm 0.08$ GeV</th>
<th>$\Delta \phi(\mu\mu)/\pi = 0.99$</th>
<th>$\Delta p_T(\mu\mu) = 0.20$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Track: $p_T > 0$ GeV</td>
<td>HCAL: $E > 4$ GeV</td>
<td>ECAL: $E > 2.5$ GeV</td>
</tr>
</tbody>
</table>
Future prospects in p-Pb collisions

- Possibility of parallel data taking of CMS and TOTEM;
- Combination of CMS central detector and TOTEM roman pots.

- Photo-nuclear processes can be measured by the activity in the central detector and no activity in the forward calorimeter and ZDC;
- Pb beam intact after interaction with proton break-up.

From presentation by I. Katkov, PhotonLHC 2014
Future prospects in Pb-Pb collisions

- Possibility of measurements in CMS with forward calorimeter;
- Data can be obtained with single muon trigger and with the ZDC information.

From presentation by I. Katkov, PhotonLHC 2014
Outline

- CMS detector and capabilities for forward physics;
- Possibilities of meson photo-production in CMS;
- Probing central exclusive processes at high-energies;
 - Measurement of exclusive $\gamma\gamma \rightarrow e^+e^-$, $\mu^+\mu^-$ production;
 - Measurement of exclusive $\gamma\gamma \rightarrow \mu^+\mu^-$ at large masses;
- Exclusive production of massive electroweak-boson pairs;
 - Search for exclusive $\gamma\gamma \rightarrow W^+W^-$ production;
 - Limits on anomalous quartic gauge couplings.
Exclusive production of e^+e^- pairs

- Selection requires vertex with two leptons tracks & nothing else;
 - $E_T(e) > 5.5$ GeV and $|\eta(e)| < 2.5$;
 - No additional tracks in the Tracker;
 - No additional towers above noise threshold in the calorimeters.

- MC predictions include elastic processes and contribution from proton dissociation:

- In the exclusive production of e^+e^- pairs, it has been observed 17 (semi-)exclusive events in 36 pb$^{-1}$;

- Good agreement between LPAIR and the data.
Exclusive production of $\mu^+\mu^-$ pairs

- Selection requires vertex with two leptons tracks & nothing else:
 - Information from the Pixel and Silicon Tracker;
 - $p_T(\mu) > 4$ GeV, $|\eta(\mu)| < 2.1$;
 - $m(\mu^+\mu^-) > 11.5$ GeV to neglect Υ resonances;
 - Exclusivity cuts: $1 - |\Delta \phi/\pi| < 0.1$ and $|\Delta p_T| < 1.0$ GeV

- The contribution from proton dissociation is included:
Cross section for $\mu^+\mu^-$ pair production

- Measurement of exclusive $\mu^+\mu^-$ pairs results in 40 pb^{-1}:

$$\sigma(pp \rightarrow p\mu^+\mu^-p) = 3.38^{+0.58}_{-0.55} \text{ (stat.) } \pm 0.16 \text{ (syst.) } \pm 0.14 \text{ (lumi.) } \text{ pb}$$

- Good agreement between LPAIR and the data in the whole kinematic region.
Outline

- CMS detector and capabilities for forward physics;
- Possibilities of meson photo-production in CMS;
- Probing central exclusive processes at high-energies;
 - Measurement of exclusive $\gamma\gamma \rightarrow e^+e^-, \mu^+\mu^-$ production;
- Measurement of exclusive $\gamma\gamma \rightarrow \mu^+\mu^-$ at large masses;
- Exclusive production of massive electroweak-boson pairs;
 - Search for exclusive $\gamma\gamma \rightarrow W^+W^-$ production;
 - Limits on anomalous quartic gauge couplings.
Selection for $\mu^+\mu^-$ events at large mass

- Data collected in 2011 by the CMS detector at 7 TeV:
 - Events with opposite-sign muons corresponding to 5.24 fb^{-1}.

- Muons are selected with the requirements:
 - $p_T(\mu) > 15 \text{ GeV}$ and $|\eta(\mu)| < 2.4$;
 - $m(\mu^+\mu^-) > 20 \text{ GeV}$ and $p_T(\mu^+\mu^-) > 30 \text{ GeV}$;

- An exclusivity selection is applied to each event:
 - $p_T(\mu)$ balance below 1 GeV;
 - Back-to-back leptons with $\Delta\phi(\mu\mu) > 0.9\pi$
 - **No extra tracks** in the vertex apart of the leptons.
Measurement of $\gamma\gamma \rightarrow \mu^+\mu^-$

- The study is performed in **two different kinematic regions** in order to discriminate the dominant contributions of elastic and inelastic interactions;

- The regions are defined as follows:

<table>
<thead>
<tr>
<th>Region</th>
<th>Elastic (quasi-exclusive)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$1-</td>
</tr>
<tr>
<td></td>
<td>$</td>
</tr>
<tr>
<td></td>
<td>$1-</td>
</tr>
<tr>
<td></td>
<td>$</td>
</tr>
</tbody>
</table>

ELASTIC REGION

- CMS, $\sqrt{s} = 7$ TeV, $L = 5.24$ fb$^{-1}$

INELASTIC REGION

- CMS, $\sqrt{s} = 7$ TeV, $L = 5.24$ fb$^{-1}$
Elastic region for $\gamma\gamma \rightarrow \mu^+\mu^-$

- The elastic region presents a good agreement with the MC predictions:

 - The contribution from both regions can be accounted in Data and MC:

<table>
<thead>
<tr>
<th>Region</th>
<th>Data</th>
<th>Simulation</th>
<th>Data/Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elastic</td>
<td>820</td>
<td>906 \pm 9</td>
<td>0.91 \pm 0.03</td>
</tr>
<tr>
<td>Dissociation</td>
<td>1312</td>
<td>1830 \pm 17</td>
<td>0.72 \pm 0.02</td>
</tr>
<tr>
<td>Total</td>
<td>2132</td>
<td>2736 \pm 19</td>
<td>0.78 \pm 0.02</td>
</tr>
</tbody>
</table>

- deficit observed in the data compared to LPAIR MC

- $1 - |\Delta\phi(\mu^+\mu^-)/\pi| < 0.1$
- $|\Delta p_T(\mu^+\mu^-)| < 1.0$
Proton dissociation in inelastic $\gamma\gamma \rightarrow \mu^+\mu^-$

- A deficit is observed in data which is not predicted by LPAIR – rescattering effects not included to the predictions;

- Proton dissociation in LPAIR is loosely constrained experimentally – a normalization factor is naturally employed for this component;

- We estimate a normalization factor for masses larger than the W-pair mass:

$$ F = \frac{N_{\mu\mu\text{ data}} - N_{DY}}{N_{elastic}} \bigg|_{m(\mu^+\mu^-)>160 \text{ GeV}} $$

$$ = 3.23 \pm 0.53. $$

- This factor is then used to re-scale the signal cross section in order to include the contribution from the proton dissociation.
Search for $\gamma \gamma \rightarrow W^+W^-$ production

- Data collected in 2011 by the CMS detector at 7 TeV:
 - Final state: $W^+W^- \rightarrow e^\pm \mu^\mp \nu\nu$ to suppress DY bkg;
 - Events with opposite-sign and flavor leptons: 5.05 fb^{-1}.

- Leptons are selected with the requirements:
 - $p_T(\ell) > 15 \text{ GeV}$ and $|\eta(\ell)| < 2.4$;
 - $m(\ell^+\ell^-) > 20 \text{ GeV}$ and $p_T(\ell^+\ell^-) > 30 \text{ GeV}$;

- Exclusivity selection:
 - $p_T(\ell)$ balance below 1 GeV;
 - Back-to-back leptons with $\Delta \varphi > 0.9\pi$
 - No extra tracks in the vertex apart of the leptons.

- aQGC: search is performed in the kinematical region with $p_T(\mu e) > 100 \text{ GeV}$.
Signal from $W^+W^- \rightarrow \mu^\pm e^\mp \nu\bar{\nu}$

- Events passing all the requirements:
 - Signal: 2.2 ± 0.4evt
 - Bkg: 0.84 ± 0.15evt

<table>
<thead>
<tr>
<th>Selection step</th>
<th>Signal $e \times A$</th>
<th>Events in data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger and preselection</td>
<td>28.5%</td>
<td>9086</td>
</tr>
<tr>
<td>$m(\mu^\pm e'^\mp) > 20$ GeV</td>
<td>28.0%</td>
<td>8200</td>
</tr>
<tr>
<td>Muon ID and Electron ID</td>
<td>22.6%</td>
<td>1222</td>
</tr>
<tr>
<td>$\mu^\pm e'^\mp$ vertex with 0 extra tracks</td>
<td>13.7%</td>
<td>6</td>
</tr>
<tr>
<td>$p_T(\mu^\pm e'^\mp) > 30$ GeV</td>
<td>10.6%</td>
<td>2</td>
</tr>
</tbody>
</table>

$\sigma \cdot \text{BR with } 95\% \text{ CL:}$

$$\sigma(p p \rightarrow p^{(*)}W^+W^-p^{(*)} \rightarrow p^{(*)} \mu^\pm e'^\mp p^{(*)}) = 2.1^{+3.1}_{-1.9} \text{ fb}$$

2.2 evt expected
2 observed
Search for aQGC

- The upper limit on the cross section times Branching fraction is found as

$$\sigma(pp \rightarrow p^(*) W^+ W^- p^(*) \rightarrow p^(*) \mu^\pm e^\mp p^(*)) < 10.6 \text{ fb}$$

CMS, \sqrt{s} = 7 \text{ TeV}, L = 5.05 \text{ fb}^{-1}

- Data
- Drell-Yan $\tau^+ \tau^-$
- Inclusive $W^* W$
- Diffractive $W^* W$
- $t\bar{t}$
- $W+$jets
- Elastic $\gamma\gamma \rightarrow \tau^+ \tau^-$
- Inelastic $\gamma\gamma \rightarrow \tau^+ \tau^-$

$$\gamma\gamma \rightarrow W^* W \quad (\text{SM})$$

$$\gamma\gamma \rightarrow W^* W \left(\frac{a_0^w}{\Lambda^2} = 2 \times 10^{-4}, \frac{a_0^w}{\Lambda^2} = 0, \Lambda_{\text{cut off}} = 500 \text{ GeV} \right)$$

$$\gamma\gamma \rightarrow W^* W \left(\frac{a_0^w}{\Lambda^2} = -2 \times 10^{-4}, \frac{a_0^w}{\Lambda^2} = -8 \times 10^{-4}, \Lambda_{\text{cut off}} = 500 \text{ GeV} \right)$$

No extra event found

- $p_T(\mu e) > 100 \text{ GeV}$
The upper limit on the cross section times Branching fraction is found as

\[-0.00015 < a_C^W / \Lambda^2 < 0.00015 \text{ GeV}^{-2} \ (a_C^W / \Lambda^2 = 0, \ \Lambda_{\text{cutoff}} = 500 \text{ GeV}),\]

\[-0.0005 < a_C^W / \Lambda^2 < 0.0005 \text{ GeV}^{-2} \ (a_C^W / \Lambda^2 = 0, \ \Lambda_{\text{cutoff}} = 500 \text{ GeV}).\]

\[-4.0 \times 10^{-6} < a_0^W / \Lambda^2 < 4.0 \times 10^{-6} \text{ GeV}^{-2} \ (a_C^W / \Lambda^2 = 0, \ \text{no form factor}),\]

\[-1.5 \times 10^{-5} < a_C^W / \Lambda^2 < 1.5 \times 10^{-5} \text{ GeV}^{-2} \ (a_0^W / \Lambda^2 = 0, \ \text{no form factor}).\]
Summary

- Encouraging results showing **excellent** forward capabilities of the CMS detector;
- Studies show the possibility to measure exclusive **meson photo-production** in CMS;
 - Photo-production of J/ψ and Υ to be explored in p-p, p-Pb and Pb-Pb collisions.
- CMS has successfully measured exclusive processes at **low** and **high** masses;
 - The observed cross sections are in agreement with the QED predictions:

 17 (semi-)exclusive events in exclusive production of e^+e^- pairs
 \[
 \sigma(pp \rightarrow p\mu^+\mu^-p) = 3.38^{+0.58}_{-0.55} \text{ (stat.)} \pm 0.16 \text{ (syst.)} \pm 0.14 \text{ (lumi.) pb}
 \]

- The search for the exclusive production of W pairs results in **two potential candidates** with observed cross section in agreement with the SM expectation:

 $\sigma(pp \rightarrow p^{(*)}W^+W^-p^{(*)} \rightarrow p^{(*)}\mu^\pm e^\mp p^{(*)}) = 2.2^{+3.3}_{-2.0} \text{ fb}$,

- AQGC limits: **two orders of magnitude** more stringent than the limits of LEP & Tevatron;
Backup slides
The CMS experiment

CASTOR: $5.3 < |\eta| < 6.6$
ZDC: $|\eta| > 8.1$

(not used in these analyses)

SILICON TRACKER
$(|\eta| < 2.5)$

CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL)
EB $(|\eta| < 1.48)$ + EE $(1.48 < |\eta| < 3.00)$

PRESHOWER
$(1.65 < |\eta| < 2.6)$

STEEL RETURN YOKE
~13000 tonnes

SUPERCONDUCTING SOLENOID
Niobium-titanium coil carrying ~18000 A

HADRON CALORIMETER (HCAL)
HB + HO: $(|\eta| < 1.3)$
HE: $1.3 < |\eta| < 3.0$
HF: $3.0 < |\eta| < 5.2$

FORWARD CALORIMETER
Steel + quartz fibres
~2k channels

Total weight: 14000 tonnes
Overall diameter: 15.0 m
Overall length: 28.7 m
Magnetic field: 3.8 T
Dielectron Analysis

<table>
<thead>
<tr>
<th>Selection criterion</th>
<th>Events remaining</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger</td>
<td>3,023,496</td>
</tr>
<tr>
<td>Electron reconstruction</td>
<td>132,271</td>
</tr>
<tr>
<td>Electron identification</td>
<td>1,668</td>
</tr>
<tr>
<td>Cosmic-ray rejection</td>
<td>1,321</td>
</tr>
<tr>
<td>Exclusivity requirement</td>
<td>17</td>
</tr>
</tbody>
</table>

Cutflow & Efficiency

<table>
<thead>
<tr>
<th>Category</th>
<th>Data</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>el-el</td>
<td>0.371 ± 0.037</td>
<td></td>
</tr>
<tr>
<td>inel-el</td>
<td>0.438 ± 0.035</td>
<td></td>
</tr>
<tr>
<td>inel-inel</td>
<td>0.430 ± 0.030</td>
<td></td>
</tr>
<tr>
<td>el-el</td>
<td>0.979 ± 0.009</td>
<td></td>
</tr>
<tr>
<td>inel-el</td>
<td>0.822 ± 0.008</td>
<td></td>
</tr>
<tr>
<td>inel-inel</td>
<td>0.639 ± 0.006</td>
<td></td>
</tr>
<tr>
<td>el-el</td>
<td>0.927 ± 0.005</td>
<td></td>
</tr>
<tr>
<td>inel-el</td>
<td>0.666 ± 0.049</td>
<td></td>
</tr>
<tr>
<td>inel-inel</td>
<td>0.299 ± 0.041</td>
<td></td>
</tr>
<tr>
<td>el-el</td>
<td>0.143 ± 0.008</td>
<td></td>
</tr>
<tr>
<td>inel-el</td>
<td>0.143 ± 0.008</td>
<td></td>
</tr>
<tr>
<td>inel-inel</td>
<td>0.143 ± 0.008</td>
<td></td>
</tr>
<tr>
<td>el-el</td>
<td>0.0481 ± 0.0055</td>
<td></td>
</tr>
<tr>
<td>inel-el</td>
<td>0.0343 ± 0.0042</td>
<td></td>
</tr>
<tr>
<td>inel-inel</td>
<td>0.0117 ± 0.0019</td>
<td></td>
</tr>
</tbody>
</table>
$\gamma\gamma \rightarrow e^+e^-$: background expectation

<table>
<thead>
<tr>
<th>Dielectron analysis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Background</td>
<td>Events</td>
</tr>
<tr>
<td>Non-exclusive</td>
<td>0.80 ± 0.28</td>
</tr>
<tr>
<td>Exclusive $\Upsilon(1S,2S,3S) \rightarrow e^+e^-$</td>
<td>Negligible</td>
</tr>
<tr>
<td>Cosmic ray</td>
<td>0.05 ± 0.01</td>
</tr>
<tr>
<td>Exclusive $\pi^+\pi^-$</td>
<td>Negligible</td>
</tr>
<tr>
<td>Total</td>
<td>0.85 ± 0.28</td>
</tr>
</tbody>
</table>
Low mass $\gamma\gamma\rightarrow\mu^+\mu^-$: cutflow

<table>
<thead>
<tr>
<th>Selection</th>
<th>Data</th>
<th>Signal</th>
<th>Single-pdiss.</th>
<th>Double-pdiss.</th>
<th>DY</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex and track-exclusivity</td>
<td>921</td>
<td>247</td>
<td>437</td>
<td>197</td>
<td>56</td>
<td>937</td>
</tr>
<tr>
<td>Muon ID</td>
<td>724</td>
<td>193</td>
<td>336</td>
<td>160</td>
<td>53</td>
<td>741</td>
</tr>
<tr>
<td>$p_T > 4\text{ GeV},</td>
<td>\eta</td>
<td>< 2.1</td>
<td>438</td>
<td>132</td>
<td>241</td>
<td>106</td>
</tr>
<tr>
<td>$m(\mu^+\mu^-) > 11.5\text{ GeV}$</td>
<td>270</td>
<td>95</td>
<td>187</td>
<td>86</td>
<td>13</td>
<td>380</td>
</tr>
<tr>
<td>3D angle $< 0.95\pi$</td>
<td>257</td>
<td>87</td>
<td>178</td>
<td>83</td>
<td>12</td>
<td>361</td>
</tr>
<tr>
<td>$1 -</td>
<td>\Delta\phi/\pi</td>
<td>< 0.1$</td>
<td>203</td>
<td>87</td>
<td>126</td>
<td>41</td>
</tr>
<tr>
<td>$</td>
<td>\Delta p_T</td>
<td>< 1.0\text{ GeV}$</td>
<td>148</td>
<td>86</td>
<td>79</td>
<td>16</td>
</tr>
</tbody>
</table>

CMS, $\sqrt{s} = 7\text{ TeV}, L = 40\text{ pb}^{-1}$

- **Data**
- **Signal** $\gamma\gamma\rightarrow\mu^+\mu^-$
- **Single dissociative** $\gamma\gamma\rightarrow\mu^+\mu^-$
- **Double dissociative** $\gamma\gamma\rightarrow\mu^+\mu^-$
- **DY $Z\gamma\rightarrow\mu^+\mu^-$**

Events/1.5 GeV

![Graph of CMS data](image)

Events/0.005

![Graph of CMS data](image)

76 GeV
Low mass $\gamma\gamma \to \mu^+\mu^-$: distributions
High mass $\gamma\gamma \rightarrow \mu^+\mu^-$: invariant mass

![Graph showing high mass $\gamma\gamma$ events](image)
High mass $\gamma\gamma \rightarrow \mu^+\mu^-$: acoplanarity

CMS, $\sqrt{s} = 7$ TeV, $L = 5.24$ fb$^{-1}$

Z region ($70 < m(\mu\mu) < 106$ GeV)

- Data
- LPAIR $\gamma\gamma \rightarrow \mu^+\mu^-$ (double-dissociation)
- LPAIR $\gamma\gamma \rightarrow \mu^+\mu^-$ (single-dissociation)
- LPAIR $\gamma\gamma \rightarrow \mu^+\mu^-$ (elastic)
- Drell-Yan $\mu^+\mu^-$

CMS, $\sqrt{s} = 7$ TeV, $L = 5.24$ fb$^{-1}$

$m(\mu\mu) > 20$ GeV with Z region removed

- Data
- LPAIR $\gamma\gamma \rightarrow \mu^+\mu^-$ (double-dissociation)
- LPAIR $\gamma\gamma \rightarrow \mu^+\mu^-$ (single-dissociation)
- LPAIR $\gamma\gamma \rightarrow \mu^+\mu^-$ (elastic)
- Drell-Yan $\tau^+\tau^-$
- Drell-Yan $\mu^+\mu^-$
High mass $\gamma\gamma \rightarrow \mu^+\mu^-$: transv. momentum

CMS, $\sqrt{s} = 7$ TeV, $L = 5.24$ fb$^{-1}$

Z region ($70 < m(\mu\mu) < 106$ GeV)

- Data
- LPAIR $\gamma\gamma \rightarrow \mu^+\mu^-$ (double-dissociation)
- LPAIR $\gamma\gamma \rightarrow \mu^+\mu^-$ (single-dissociation)
- LPAIR $\gamma\gamma \rightarrow \mu^+\mu^-$ (elastic)
- Inclusive WW
- Drell-Yan $\mu^+\mu^-$

Events / 2.5 GeV

$p_T(\mu\mu)$ [GeV]
\[\gamma \gamma \rightarrow W^+W^- : \text{efficiencies} \]

<table>
<thead>
<tr>
<th>Selection step</th>
<th>Signal (\epsilon \times A)</th>
<th>Visible cross section (fb)</th>
<th>Events in data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger and preselection</td>
<td>28.5%</td>
<td>1.1</td>
<td>9086</td>
</tr>
<tr>
<td>(m(\mu^\pm e^\mp) > 20 \text{ GeV})</td>
<td>28.0%</td>
<td>1.1</td>
<td>8200</td>
</tr>
<tr>
<td>Muon ID and Electron ID</td>
<td>22.6%</td>
<td>0.9</td>
<td>1222</td>
</tr>
<tr>
<td>(\mu^\pm e^\mp) vertex with zero extra tracks</td>
<td>13.7%</td>
<td>0.6</td>
<td>6</td>
</tr>
<tr>
<td>(p_T(\mu^\pm e^\mp) > 30 \text{ GeV})</td>
<td>10.6%</td>
<td>0.4</td>
<td>2</td>
</tr>
</tbody>
</table>
$\gamma\gamma \rightarrow W^+W^-$: background expectation

<table>
<thead>
<tr>
<th>Region</th>
<th>Background process</th>
<th>Data</th>
<th>Sum of backgrounds</th>
<th>$\gamma\gamma \rightarrow W^+W^-$ signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inclusive W^+W^-</td>
<td>43</td>
<td>46.2 ± 1.7</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>Inclusive Drell-Yan $\tau^+\tau^-$</td>
<td>182</td>
<td>256.7 ± 10.1</td>
<td>0.3</td>
</tr>
<tr>
<td>3</td>
<td>$\gamma\gamma \rightarrow \tau^+\tau^-$</td>
<td>4</td>
<td>2.6 ± 0.8</td>
<td>0.7</td>
</tr>
</tbody>
</table>
\(\gamma \gamma \rightarrow W^+ W^- \): systematic uncertainties

<table>
<thead>
<tr>
<th>Source of Uncertainty</th>
<th>Signal Uncertainty</th>
<th>Background Uncertainty (events)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger and lepton identification</td>
<td>4.2%</td>
<td>0.02</td>
</tr>
<tr>
<td>Luminosity</td>
<td>2.2%</td>
<td>0.005</td>
</tr>
<tr>
<td>Vertexing efficiency</td>
<td>1.0%</td>
<td>0.005</td>
</tr>
<tr>
<td>Exclusivity and pileup dependence</td>
<td>10.0%</td>
<td>0.05</td>
</tr>
<tr>
<td>Proton dissociation factor</td>
<td>16.3%</td>
<td>0.02</td>
</tr>
</tbody>
</table>
$\gamma\gamma \rightarrow W^+W^- : \text{ missing } E_T$
Efficiencies in aQGC

<table>
<thead>
<tr>
<th></th>
<th>(a_0^W / \Lambda^2) [GeV(^{-2})]</th>
<th>(2 \times 10^{-4})</th>
<th>(-2 \times 10^{-4})</th>
<th>(7.5 \times 10^{-6})</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(a_C^W / \Lambda^2) [GeV(^{-2})]</td>
<td>0</td>
<td>0</td>
<td>(-8 \times 10^{-4})</td>
<td>0</td>
</tr>
<tr>
<td>(\Lambda) [GeV]</td>
<td>—</td>
<td>500</td>
<td>500</td>
<td>No form factor</td>
<td>No form factor</td>
</tr>
<tr>
<td>Efficiency</td>
<td>(30.5 \pm 5.0%)</td>
<td>(29.8 \pm 2.1%)</td>
<td>(31.3 \pm 1.8%)</td>
<td>(36.0 \pm 1.7%)</td>
<td>(36.3 \pm 1.8%)</td>
</tr>
</tbody>
</table>