Exotic meson studies at LHCb

M. Kreps on behalf of the LHCb Collaboration
We think of hadrons as $q\bar{q}$ or qqq

But there is nothing preventing other combinations

Can we find
- molecule
- tetraquark
- your other favourite choice
X(3872) enigma

- Discovered in 2003 by Belle
- Huge number of results available
- Quantum numbers $J^{PC} = 1^{++}$
- Nature of $X(3872)$ still unclear
- Today radiative decays

CDF Run II Preliminary

L = 780 pb$^{-1}$

Data points

acc. corrected prediction for:
- 0^{++}
- 1_s^-
- 1^{++}
- 2_p^+

Number of experiments / bin

LHCb

Simulated $J^{PC}=2^+$

Simulated $J^{PC}=1^{++}$

t_{data}

-200 -100 0 100 200

10^{-7} 10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^0 10^1 10^2 10^3 10^4 10^5 10^6 10^7

PRL 98, 132002

PRL 91, 262001

PRL 110, 222001

Discovered in 2003 by Belle

Huge number of results available

Quantum numbers $J^{PC} = 1^{++}$

Nature of $X(3872)$ still unclear

Today radiative decays

$X(3872)$ yield / unit volume

0.40 0.80 1.20

$M(\pi^+\pi^-\ell^+\ell^-) - M(\ell^+\ell^-)$ (GeV)

Events / 0.010 GeV

Number of experiments / bin

10^{-7} 10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^0 10^1 10^2 10^3 10^4 10^5 10^6 10^7
$X(3872) \rightarrow \psi\gamma$

$M(J/\psi\gamma K^+)[\text{GeV}/c^2]$ for $M(\psi(2S)\gamma K^+)[\text{GeV}/c^2]$ = 591 ± 48

$M(\psi(2S)\gamma K^+)[\text{GeV}/c^2]$ for $M(\psi(2S)\gamma)[\text{GeV}/c^2]$ = 36.4 ± 9.0

4.4σ

arXiv:1404.0275
We measure

\[R = \frac{\mathcal{B}(X(3872) \to \psi(2S)\gamma)}{\mathcal{B}(X(3872) \to J/\psi \gamma)} = 2.46 \pm 0.64 \pm 0.29 \]

Compare to theory for different interpretations

- Clear inconsistency with pure molecule
- Pure $c\bar{c}$ or mixture of molecule with $c\bar{c}$ possible
Z(4430)$^+$ history

- Seen by Belle, but not Babar
- Data consistent
- Charged state
 → Cannot be $c\bar{c}$
- Latest Belle result uses 4D analysis
- Is it real and if yes, is it resonance?
Z(4430)+ history

- Seen by Belle, but not Babar
- Data consistent
- Charged state
 - Cannot be $c\bar{c}$
- Latest Belle result uses 4D analysis
- Is it real and if yes, is it resonance?
Data sample

- Use $B^0 \rightarrow \psi(2S) K\pi$ decays
- Large statistics (> 25k), about 10 times what B-factories had
- Very clean signal, background 4% of events (about 8% at B-factories)
- Perform both model-independent analysis (BABAR) and amplitude fit (Belle)
Model independent method

- Look to $\cos(\theta_K)$ in bins of $K\pi$ mass
- Allows to find out which spins contribute
 $$\sum_i \frac{1}{\epsilon_i} P_l(\cos \theta_{Ki})$$
- Take only moments corresponding to $J \leq 2$
- Construct Dalitz plot and project on $\psi(2S)\pi$ axis

- Test whether contributions in $K\pi$ system can describe data
- Do not impose specific model for resonances
 → Model independent test
Clearly, pure kaon resonances cannot explain $M(\psi(2S)^+\pi^-)$ spectrum.

Understanding details difficult.

- Resonances in $\psi(2S)^+\pi^-$ will contribute to $K\pi$ and its moments.
- Any fit to $\psi(2S)^+\pi^-$ on top of reflections neglects interference between two axes.
Amplitude analysis

- Full 4D amplitude analysis
- Amplitude

\[|M|^2 = \sum_{\Delta \lambda \mu} \left| \sum_{\lambda_\psi} \sum_k A_{k,\lambda_\psi} (\Omega | m_{0k}, \Gamma_{0k}) + \sum_{\lambda_{\psi Z}} A_{Z,\lambda_{\psi Z}} (\Omega^Z | m_{0Z}, \Gamma_{0Z}) e^{i \Delta \mu \alpha} \right|^2 \]

- Mass described by relativistic Breit-Wigner
- Angular part using helicity formalism
- Imposes model how invariant mass distribution should look like

Rotation between helicity frames
Only K^* resonances

$|m_{\psi\pi}^2| < 1.8$ GeV2

<table>
<thead>
<tr>
<th>Resonance</th>
<th>J^P</th>
<th>Likely $n^{2S+1}L_J$</th>
<th>Mass (MeV)</th>
<th>Width (MeV)</th>
<th>$B(K^{*0} \rightarrow K^\mp \pi^-)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_0^*(800)^0$</td>
<td>0^+</td>
<td>—</td>
<td>682 ± 29</td>
<td>547 ± 24</td>
<td>$\sim 100%$</td>
</tr>
<tr>
<td>$K^*(892)^0$</td>
<td>1^-</td>
<td>$1^3 S_1$</td>
<td>895.94 ± 0.26</td>
<td>48.7 ± 0.7</td>
<td>$\sim 100%$</td>
</tr>
<tr>
<td>$K_0^*(1430)^0$</td>
<td>0^+</td>
<td>$1^3 P_0$</td>
<td>1425 ± 50</td>
<td>270 ± 80</td>
<td>(93 ± 10)%</td>
</tr>
<tr>
<td>$K_1^*(1410)^0$</td>
<td>1^-</td>
<td>$2^3 S_1$</td>
<td>1414 ± 15</td>
<td>232 ± 21</td>
<td>(6.6 ± 1.3)%</td>
</tr>
<tr>
<td>$K_2^*(1430)^0$</td>
<td>2^+</td>
<td>$1^3 P_2$</td>
<td>1432.4 ± 1.3</td>
<td>109 ± 5</td>
<td>(49.9 ± 1.2)%</td>
</tr>
</tbody>
</table>

$B^0 \rightarrow \psi(2S)K^\mp \pi^-$ phase space limit 1593

$B^0 \rightarrow J/\psi K^\mp \pi^-$ phase space limit 2183

- **data**
- **total fit**
- **K^* S-wave**
- **$K_2(1430)$**
- **background**
- **$K^*(1680)$**
- **$K^*(1410)$**

Michal Kreps – Exotic meson studies at LHCb
Only K^* resonances

Data cannot be described by K^* only

<table>
<thead>
<tr>
<th>Resonance</th>
<th>J^P</th>
<th>Likely $n^{2S+1}L$</th>
<th>Mass (MeV)</th>
<th>Width (MeV)</th>
<th>$B(K^{*0} \rightarrow K^+\pi^-)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K^*_0(800)^0$</td>
<td>0^+</td>
<td>-</td>
<td>682 ± 29</td>
<td>547 ± 24</td>
<td>~ 100%</td>
</tr>
<tr>
<td>$K^*_1(892)^0$</td>
<td>1^-</td>
<td>$1^3 D_1$</td>
<td>895.94 ± 0.26</td>
<td>48.7 ± 0.7</td>
<td>~ 100%</td>
</tr>
<tr>
<td>$K^*_0(1430)^0$</td>
<td>0^+</td>
<td>$1^3 P_0$</td>
<td>1425 ± 50</td>
<td>270 ± 80</td>
<td>(93 ± 10)%</td>
</tr>
<tr>
<td>$K^*_1(1410)^0$</td>
<td>1^-</td>
<td>$2^3 S_1$</td>
<td>1414 ± 15</td>
<td>232 ± 21</td>
<td>(6.6 ± 1.3)%</td>
</tr>
<tr>
<td>$K^*_2(1430)^0$</td>
<td>2^+</td>
<td>$1^3 P_2$</td>
<td>1432.4 ± 1.3</td>
<td>109 ± 5</td>
<td>(49.9 ± 1.2)%</td>
</tr>
</tbody>
</table>

$B^0 \rightarrow \psi(2S)K^+\pi^-$ phase space limit: 1,593

$K^*_1(1680)^0$	1^-	$1^3 D_1$	1717 ± 27	322 ± 110	(38.7 ± 2.5)%
$K^*_2(1780)^0$	3^-	$1^3 D_3$	1776 ± 7	159 ± 21	(18.8 ± 1.0)%
$K^*_0(1950)^0$	0^+	$2^3 P_0$	1945 ± 22	201 ± 78	(52 ± 14)%
$K^*_1(2045)^0$	4^+	$1^3 F_4$	2045 ± 9	198 ± 30	(9.9 ± 1.2)%

$B^0 \rightarrow J/\psi K^+\pi^-$ phase space limit: 2,183

| $K^*_5(2380)^0$ | 5^- | $1^3 G_5$ | 2382 ± 9 | 178 ± 32 | (6.1 ± 1.2)% |
Adding Z^+
Dalitz plot slices

\[m_{K^+\pi^-}^2 < 0.7 \text{ GeV}^2 \]

\[0.7 < m_{K^+\pi^-}^2 < 1.0 \text{ GeV}^2 \]

\[m_{K^+\pi^-}^2 > 1.8 \text{ GeV}^2 \]

\[< 0.7 \text{ GeV}^2 \]

\[< 1.0 \text{ GeV}^2 \]

\[> 1.8 \text{ GeV}^2 \]

arXiv:1404.1903

Michal Kreps – Exotic meson studies at LHCb
Results

Data are described well with $1^+ \ Z(4430)^+$ contribution (χ^2 p-value 12%)

- Parameters extracted consistent with Belle
- Large interference effects seen
- Adding additional K^* resonances to model does not alter conclusion

$LHCb$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M(Z)$</td>
<td>$4475 \pm 7^{+15}_{-25}$ MeV</td>
</tr>
<tr>
<td>$\Gamma(Z)$</td>
<td>$172 \pm 13^{+37}_{-34}$ MeV</td>
</tr>
<tr>
<td>f_Z</td>
<td>$5.9 \pm 0.9^{+1.5}_{-3.3}$ %</td>
</tr>
<tr>
<td>f_I^Z</td>
<td>$16.7 \pm 1.6^{+2.6}_{-5.2}$ %</td>
</tr>
</tbody>
</table>

Significance $> 13.9\sigma$
As we use full kinematic information, we have sensitivity to quantum numbers

- Test spins 0, 1, and 2 with both parities
- Based on likelihood ratio
- Quote exclusion based on asymptotic formula (lower bound)
- Verified by simulation
- All rejections relative to 1^+

$Z(4430)^+$ is 1^+ state without any doubts
Is $Z(4430)^+$ resonance?

- Data are consistent with BW for $Z(4430)^+$
- But will they follow if BW is not imposed?
- Change BW in $Z(4430)^+$ amplitude to 6 complex numbers in 6 $M(\psi(2S)\pi)$ bins
- Plot resulting amplitude on Argand plot
Is $Z(4430)^+$ resonance?

- Data are consistent with BW for $Z(4430)^+$
- But will they follow if BW is not imposed?
- Change BW in $Z(4430)^+$ amplitude to 6 complex numbers in 6 $M(\psi(2S)\pi)$ bins
- Plot resulting amplitude on Argand plot

⇒ It shows resonance behaviour without imposing it
Second Z^+ state

Data can be described even better by adding second $\psi(2S)\pi$ state

- On its own, it is significant
- Preferred 0^- (but 660 ± 150 MeV wide 1^+ option cannot be ruled out)
- Argand diagram is inconclusive
- No evidence in model-independent approach
- Will need more data to clarify situation
Conclusions

- Decay $X(3872) \rightarrow \psi(2S)\gamma$ seen with significance 4.4σ
- Radiative $X(3872)$ decays inconsistent with pure molecule
- $Z(4430)^+$ from Belle confirmed and $J^P = 1^+$ without any doubts
- From Argand plot, resonance character of $Z(4430)^+$ is demonstrated
- Charge and quantum numbers rule out conventional explanations
- $Z(4430)^+$ most likely tetraquark state
- Really interesting era is ahead of us
Backup
- Good mass resolution
- Good time resolution
- High trigger rate on c and b
- Uniform running conditions